Cell-filling spiral patterns are observed in a vertically oscillated layer of granular material when the oscillation amplitude is suddenly increased from below the onset of pattern formation into the region where stripe patterns appear for quasistatic increases in amplitude. These spirals are transients and decay to stripe patterns with defects. A transient spiral defect chaos state is also observed. We describe the behavior of the spirals, and the way in which they form and decay. Our results are compared with those for similar spiral patterns in Rayleigh-Benard convection in fluids.