
PATTERN FORMATION IN VERTICALLYVIBRATED GRANULARLAYERS: EXPERIMENT AND SIMULATION
M. D. SHATTUCK, C. BIZON, PAUL B. UMBANHOWAR, J. B. SWIFT ANDHARRY L. SWINNEYCenter for Nonlinear Dynamicsand Department of PhysicsThe University of Texas at AustinAustin, TX 78712Abstract.We report on pattern formation in experiments and simulations of verti-cally vibrated granular layers. We �nd that initially at vibrated layers losestability to sub-harmonic standing wave patterns when the driving accelera-tion is increased to about 2.5 times gravity. Patterns can be squares, stripes,hexagons, or localized structures (oscillons), depending on frequency andacceleration. Event driven simulations show excellent qualitative and quan-titative agreement with the experiments.1. IntroductionIn this article, we review our recent work on pattern formation in verticallyvibrated granular layers [1, 6, 7, 11]. Other similar experiments showingconvection and heap formation [2], size segregation [3], and bubbling [8]result from a combination of side wall friction and interaction with the in-terstitial gas [9]. In our experiments we diminish these e�ects by using thinlayers (i.e., the horizontal size of the system is much larger than the depth),which limits the e�ects of the walls, and evacuating the system, which elimi-nates the interaction with interstitial gas. Under these conditions verticallyvibrated granular layers yield a variety of standing wave patterns whichoscillate at either one-half or one-quarter of the vibration frequency f . Theplanform of the pattern is determined by two control parameters, f and theacceleration amplitude, � = 2�Af2=g, where g is the gravitational acceler-ation constant and A is the oscillation amplitude. Depending on the values
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(b)Figure 1. (a) Schematic of the experimental apparatus showing the test cell, the shakerand the imaging system. The camera can be placed above, to produce images like thosein Figure 2, or to the side of the test cell, to produce images like those in the top of Figure3(b). (b) Phase diagram for a 1.2 mm deep layer of 0.15{0.18 mm bronze spheres showingtransitions between pattern states. The dashed lines indicate the square/stripe transition.Solid (open) circles and squares denote transitions with increasing (decreasing) �.of � and f , squares, stripes, hexagons, and localized structures can be seen[6, 7, 11]. In order to facilitate a microscopic understanding of the system,Bizon et al. have developed an event driven simulation which reproducesthe observations at the experimental values of the control parameters [1].2. Experimental ApparatusThe experiment consists of a container (typically cylindrical, of diameter=126 mm) �lled with a thin layer of particles (2{30 particle diameters deep)and vibrated sinusoidally (A sin(2�ft)) in the vertical direction by an in-dustrial electro-mechanical shaker (see Figure 1(a)). The top and sides ofthe cell are transparent for visualization by a high speed digital camera;the bottom is aluminum. Many di�erent types of particles (e.g., bronze,lead, glass, plastic, rice, etc.) and diameters (0:05{3 mm) have been used,but typically bronze spheres sieved to a range of 0:15{0:18 mm diameterare used. The physical control parameters are the amplitude A, varied upto 1 cm, and the frequency f , varied from 10 to 200 Hz. Experiments aretypically performed at constant � and f is varied.3. PatternsWhen the layer is shaken at an acceleration below � = 1, it remains station-ary in the reference frame of the cell. For �c > � > 1, the layer separates
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(a) (b) (c)Figure 2. Patterns formed in 0.15{0.18 mm bronze spheres in a 126 mm container. An80 mm x 80 mm section is shown. The images are created by low angle strobed light. (a)squares, f = 22 Hz, � = 2:5, H = 4 particle diameters; (b) stripes, f = 47 Hz, � = 2:5,H = 4 particle diameters; (c) hexagons, f = 67 Hz, � = 4:0, H = 7 particle diameters.from the bottom plate of the cell for a portion of the cycle, but the top andbottom surfaces of the layer remain at, even though the layer is in freeight, until a critical acceleration �c is reached and the at layer becomesunstable to spatially periodic standing waves, which oscillate at f=2 [6].As the acceleration is increased further, a bifurcation sequence is observed(Figure 1(b)). The pattern at onset has a 10% hysteresis in � at low fre-quencies and is squares at low frequencies (Figure 2(a)) and stripes (Figure2(b)) at high frequencies. When � is increased to about 4, both squares andstripes lose stability to hexagons (Figure 2(c)). At still larger � the layeris thrown so high that it impacts the plate only once every other oscilla-tion and hexagons become unstable to a at layer which oscillates at f=2.Because the layer oscillates at f=2, two phases with respect to the drivingfrequency can co-exist in the cell forming a kink between the regions ofdi�erent phase. Further increases in � cause the sequence of bifurcationsto be repeated, except the pattern now oscillates at f=4. From � = 7 to10 (the largest � studied) a disordered state exists. Melo et al. [7] explainmost of this phase diagram using a simple model which treats the layer asa single totally inelastic ball.4. Localized Structures | oscillonsUmbanhowar et al. [11] found that in deeper layers (> 13 particle diame-ters), localized structures (Figure 3) form as � is lowered below the pointwhere squares or stripes are stable. The range of stability for these struc-tures, named oscillons, is small: 2:4 < � < 2:5 and 20 < f < 35 Hz for alayer of 0:15{0:18 mm bronze spheres at a depth of 17 particle diameters.Oscillons are stable localized structures oscillating at f=2, just like thestanding wave patterns described above. Figure 3(a) shows two oscillons in
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(a) (b)Figure 3. (a) Oscillons observed using 0:15{0:18 mm bronze spheres, 17 particle diam-eters deep in a 126 mm cell at f = 26 Hz and � = 2:54. (b) Side and top views of singleoscillons. The left and right images are separated by one container oscillation.a 126 mm diameter cell. This snapshot shows that, due to the sub-harmonicnature of this pattern, two phases of oscillons can coexist. Figure 3(b) showsclose up side and top views of the oscillon in each phase. Oscillons of unlikephase can bind to form pairs, chains, and other complex structures withcoordination number up to three [11].5. Numerical SimulationIn an e�ort to understand the pattern formation described above, and itsconnection to the microscopic grain interactions, Bizon et al. [1] have devel-oped an event driven numerical simulation of this granular system [5, 4, 10].In this type of simulation time advances from collision to collision with bal-listic motion between collisions. A sorted list of the time-to-next-collision ismaintained for each particle and is used to determine the next collision. Thesimulation advances through the collision using a model which maps thevelocities and angular velocities of each particle before the collision to theirvalues after the collision. Linear and angular momentum are conserved incollisions, but not energy. The collision duration is assumed zero, thereforelimiting the particle interactions to binary collisions. Interactions with thefour walls and the bottom plate are treated like particle-particle interac-tions with one particle's (i.e., the wall's) mass going to in�nity. To test thevalidity of the model, experiments were conducted for conditions as closeas possible to the simulation. Either 60000 or 30000 particles were used in asquare container which is 100 particle diameters on each side, correspond-
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Figure 4. Comparison of standing wave patterns obtained in experiment and simulation:(a) squares, (b) stripes, (c) and (d) alternating phases of hexagons. All Patterns oscillateat f/2. The layer depth is 5:42 particle diameters. The experiments use lead spheres sievedbetween 0:5{0:6 mm in a container which is 100 particle diameters on each side.ing to layer depths of H = 5:42 and H = 2:71 particle diameters respec-tively. Experiments and simulation are compared using a non-dimensionalfrequency f� = fpH=g. In the experiment the particles were lead spheressieved between 500 and 600 mm. In the simulation, three collisional par-ticle properties | the coe�cient of friction �, the normal coe�cient ofrestitution e, and the cuto� for the rotation coe�cient of restitution �0 |must be determined. The value of �0 is taken from the literature [12, andreferences therein]. e and � are determined by adjusting their values untilthe wavelength of the pattern in the simulation and experiment matchedin two speci�c runs, � = 3:0, f� = 0:205, H = 2:71 (for e), and � = 3:0,f� = 0:534, H = 5:42 (for �). Figure 4 shows patterns obtained in thesimulation and experiment at the same values of control parameters whichare denoted by points on the phase diagram (Figure 5(a)) labeled (a){(d).The labels (e){(h) in Figure 5(a) denote further runs which show the sameexcellent agreement as in Figure 4. The measured pattern wavelengths forvarious f�, in experiment and simulation agree well, even when comparingthe simulation in a cell 100 particle diameters wide with experiments in alarge container with a diameter of 982 particle diameters (Figure 5(b)).6. AcknowledgementsThis research is supported by the U.S. Department of Energy O�ce ofBasic Energy Sciences and the Texas Advanced Research Program.
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