
VELOCITY CORRELATIONS INDRIVEN TWO-DIMENSIONAL GRANULAR MEDIA
C. BIZON, M. D. SHATTUCK,J. B. SWIFT AND HARRY L. SWINNEYCenter for Nonlinear Dynamis and Dept. of Physis,University of Texas, Austin, TX 78712, USAAbstrat. Simulations of volumetrially fored granular media in two di-mensions produe states with nearly homogeneous density. In these states,long-range veloity orrelations with a harateristi vortex struture de-velop; given suÆient time, the orrelations �ll the entire simulated area.These veloity orrelations redue the rate and violene of ollisions, sothat pressure is smaller for driven inelasti partiles than for undriven elas-ti partiles in the same thermodynami state. As the simulation box sizeinreases, the e�ets of veloity orrelations on the pressure are enhanedrather than redued.

1. IntrodutionIn rapid ows of granular media, the mean time between ollisions of grainsis muh longer than the duration of a ollision [1℄; for suh ows, the ma-hinery of kineti theory is expeted to apply. Continuum equations [2, 3℄analogous to the Navier-Stokes equations an be produed, allowing quanti-tative analysis of ows. The simplest and most ommon formulations inor-porate Boltzmann's assumption of moleular haos: that partile veloitiesare unorrelated.While this assumption works well for low-density moleular gases, gran-ular gases may not abide suh a restrition beause ollisions betweengrains are inelasti. Inelasti ollisions redue relative veloities, so thatpost-ollisional veloities are more parallel than pre-ollisional veloities.Repeated inelasti ollisions an lead to strong, long-range veloity orrela-



2tions, whih standard kineti theory does not inlude. We will use moleulardynamis simulations to produe steady state granular gases and study theveloity orrelations that develop.The importane and intrinsi interest of veloity orrelations in gran-ular ows have been noted by a number of researhers. Two-dimensionalsimulations of an initially homogeneous distribution of inelasti disks with-out veloity orrelations show that as time progresses, veloity orrelationsbuild in both strength and range [4℄. These simulations are limited in time,however, beause the homogeneous state is unstable to density utua-tions, and rapidly beomes inhomogeneous. Nevertheless, these simulationslearly displayed a harateristi vortex struture of the orrelations. Basedupon similar onsiderations, ring kineti theory, whih aounts for velo-ity orrelations, has been applied to the ooling state [5℄. One-dimensionalsimulations of stohastially fored point partiles also show veloity or-relations [6℄.We apply stohasti foring [6, 7℄ to two-dimensional event-driven simu-lations of inelasti disks. The foring overomes the tendeny of the granularmaterial to form density lusters, and approximately homogeneous steadystates form. In an earlier study of these states [8℄, we found strong veloityorrelations that extended throughout the entire simulation area. In thepresent work, we disuss the simulation method, show that the veloityorrelations are essentially independent of the simulated area, and desribethe vortex struture of the orrelations.2. Simulations of Driven Granular GasesWe treat ollisions between moleules as instantaneous and binary. Theollisions between grains onserve momentum but dissipate energy. Betweenollisions, partiles travel along straight lines if unaelerated, or alongparabolas if aelerated. This model allows eÆient simulation of olletionsof partiles using event-driven moleular dynamis [9, 10℄.When partiles ollide, the omponent of the relative partile veloityalong the line joining partile enters, vn, is reversed, and redued by afator e, the oeÆient of restitution, whih an take values between 1for elasti partiles and 0 for ompletely inelasti partiles. We allow e todepend on vn throughe(vn) = � 1�Bv�n ; vn < vo� ; vn > vo ; (1)where B = (1 � �)(vo)��, � = 3=4 and � is a onstant, hosen to be 0:7.These parameters give quantitative agreement to experiments on patternsin vertially osillated granular media [11, 12℄. The variation in e has the ef-



3fet of removing inelasti ollapse [13℄, whih is a singularity in the inelastihard sphere model that produes an in�nite number of ollisions within a�nite time [14, 15℄. In general, olliding partiles also exert fritional foreson one another; for this paper, we assume that the oeÆient of frition iszero, so that we are studying only the e�ets of inelastiity.Beause of inelastiity, the energy of an unfored olletion of grainsinevitably dereases. To ahieve steady states, then, we must fore thegranular material. Methods that fore through boundaries, suh as shak-ing, invariably produe strong inhomogeneities in the system; to ahievenear-homogeneity, we fore volumetrially, assuming the partiles to be inontat with a white-noise heat bath [7℄. Whenever two partiles ollide, theveloities of two other randomly seleted partiles are hanged by amountsjÆvjr̂i, where the magnitude of the kiks, jÆvj, are always the same, butthe diretion vetors, r̂i are randomly hosen for eah kiked partile. Inaddition to the white noise heat bath, we perform a lesser number of runswith two other heat baths. To model the motions of puks on an air ta-ble [16, 17℄, we an allow partiles to aelerate randomly from ollisionto ollision. Finally, we model the e�ets of a strong heat bath, whih wedenote the Boltzmann bath, by ompletely obliterating the veloities ofrandomly hosen partiles, and giving new veloities based on a Boltzmanndistribution. The details of all three foring methods may be found in [8℄.We perform simulations of N disks of diameter � moving in a two-dimension square of side length L, whih varies from 52:6� to 420:8�. Thesimulation box is periodi in both diretions. The solid fration, de�nedas N �4 �2L2 , is 0:5 for all runs. Beause of the variation of e with relativenormal veloity, the veloity sale v0 enters; we use v0 to nondimensionalizeveloities, and v20 to nondimensionalize the granular temperature T . For Tmuh larger than one, most partile ollisions will our with the high-veloity value of e, 0:7; for lower T , a range of e will our.3. Dependene of Correlations upon Simulation AreaWe denote two partiles 1 and 2, and k̂ the a unit vetor pointing fromthe enter of 1 to the enter of 2. The veloity of 1 then has a omponentsparallel to, vjj1 , and perpendiular to, v?1 , k̂, as does partile 2. We de�netwo orrelation funtionshvjj1vjj2 i = X vjj1vjj2=Nr; (2)hv?1 v?2 i = X v?1 v?2 =Nr; (3)where the sums are over the Nr partiles suh that the distane between thetwo partiles is within Ær of r. For unorrelated partile veloities, hvjj1vjj2 iand hv?1 v?2 i will both give zero.



4 In the smallest simulation area, L = 52:6�, orrelations extend the fulllength of the omputational ell. Cell �lling strutures may be divided intotwo ases: strutures with a natural length that is larger than the boxin whih they exist and strutures that will always grow to �ll any �nitebox. To di�erentiate between the former and the latter, we performed foursimulations with white noise foring, quadrupling the area at eah step,while holding the solid fration �xed at 0:5. The granular temperature T isapproximately 30, but varies between 28 in the smallest box and 32 in thelargest. This variation in temperature is not important; for T >> 1, theoeÆient of restitution is independent of ollision veloity. In this limit,the role of the temperature is simply to set the veloity sale. The veloityorrelation funtions are shown in Fig. 1. Even in the largest simulation,omposed of 112768 partiles, the orrelations �ll the box. However, theorrelation funtions for the largest simulation are somewhat di�erent fromthe smaller ones. This is probably due to poorer statistis; in terms ofollisions per partile, this run lasted only one-half as long as the nextlargest.Beause veloity orrelations are positive for small separations, partilesollide less frequently and with less relative veloity than elasti partilesat the same density, for whih veloity orrelations are muh smaller. As aresult, less momentum will be transferred through inelasti ollisions thanthrough elasti ollisions, and the pressure, P , will derease.Assuming that veloity orrelations do not exist, the equation of statefor dense granular gases is given by [3℄P = (4=��2)�T (1 + (1 + e)G(�)):; (4)The �rst term on the right hand side, (4=��2)�T , aounts for momentumtransfer due to partile streaming without ollisions, while the seond term,(4=��2)�T (1+e)G(�), aounts for the momentum transfer due to partileollisions [18℄. In the absene of veloity orrelations, G(�) is de�ned as�g(�; �), where g(�; �) is the radial distribution funtion for the partiles,evaluated at zero partile separation. Calulation of P from simulation,via measurement of the virial [19℄, beomes a measurement of G(�), whihdesribes the ollisional momentum transport. If veloity orrelations exist,G(�) will be redued, sine less momentum will be transported ollisionally.Figure 1 shows that the short range veloity orrelations depend on thesize of the box; therefore, G(�) should also depend on L. Figure 2 displaysG(�) as a funtion of L for these four runs. Over about one deade, G(�)sales with logL. Clearly this saling an not ontinue inde�nitely, sineunphysial negative values of G(�) would result. Note also, that inreasingthe box size atually leads to values of G(�) farther from the values forunorrelated veloities.
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Figure 1. Veloity orrelations as a funtion of partile separation at � = 0:5 and T � 30,for four di�erent box sizes. + : L = 52�, 4 : L = 105�, � : L = 211�, 2 : L = 421�.This unusual result, that the importane of veloity orrelations in-reases with inreasing omputational area, an also be dedued from thedistribution of ollision veloities. Figure 3 exhibits these distributions forthe runs displayed in Figures 1 and 2. As the omputational area inreases,so too does the deviation from the distribution predited for partiles ho-sen without orrelation from a Boltzmann distribution, plotted as a solid
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Figure 2. G as a funtion of L for the runs shown in Fig. 1. Lo = 52� denotes the lengthof the smallest box. The dotted line is a �t to all four points: G(�) = 1:3�0:04 log2(L=Lo),The solid line as a �t to the three largest L values: G(�) = 1:295 � 0:038 log2(L=Lo).Note that the log is base 2.urve.4. Vortex StrutureInelastiity breeds veloity orrelations; redution of relative veloity inollisions leads to partiles moving more alike after ollisions than before.On average, then, partiles will be surrounded by partiles that are movingalong with them. The struture of the veloity orrelations an be elui-dated by alulating this average ow around eah partile.For a single partile i, we an alulate the ow around it by translatingit to the origin, and rotating so that its veloity lies along the positive xaxis. If v(x; y) is the veloity �eld de�ned by the partiles, then the owaround partile i is given byui = R�(i)v(x� xi; y � yi); (5)where �(i) is the angle between the i-th partile veloity, vi , and thepositive x axis, (xi; yi) is the position of the i-th partile, and R� is theoperator that rotates vetors lokwise through angle �. The average ow
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Figure 3. Probability distribution of ollision veloities v = jv1 � v2j, for the data inFigs. 1 and 2. + : L = 52�, 4 : L = 105�, � : L = 211�, 2 : L = 421�. The solid urveis P (v=pT ) = (1=2p�T 3)v2e�v2=4T , whih holds for elasti partiles.around partiles, then, is u = NXi=1 ui=N: (6)Finally, u is averaged over about 100 frames to redue noise.Figure 4 displays vetor �elds of the average ow around partiles, u,for the three types of foring, as well as for unfored elasti partiles, allat � = 0:5 and T = 1:05. In eah ase, the vetor at the origin, whihmeasures only the average partile speed, has been suppressed, and thelongest remaining vetor in eah �eld has been saled to unit length. In boththe white noise and aelerated forings, the average ow near the originis along the positive x axis, i.e., with the diretion of the entral partile'smotion. The Boltzmann bath shows some indiations of this e�et lose tothe origin, but the orrelations are destroyed by the strongly thermalizingforing before they an propagate to larger length sale. For the elastipartiles, there is no disernible ow, only noise.Close to any partile, surrounding partiles move along with it. Far-ther away, the orrelations deay and annot be seen on Fig 4, so theboxed regions for the white noise foring and for elasti partiles are ex-panded in Fig. 5. While expansion of the veloity �eld for elasti partiles
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Figure 4. The average veloity �elds around a partile entered in eah ell and movingto the right, u, for elasti partiles and for inelasti partiles fored in three di�erentways (f setion 2). Eah vetor �eld is saled separately so that its longest vetor haslength one. Compared to the (suppressed) entral vetor, these lengths are: White noise,0.2; Aelerated, 0.27; Boltzmann, 0.008; Elasti 0.008. The boxed regions in the whitenoise and elasti ows are shown in Fig. 5.produes still more noise, the inelasti ow �eld reveals a highly orderedvortex struture. Along the diretion of the entral partile's motion, theveloities slowly drop to zero, while perpendiular to the original partile'smotion, the veloities drop to zero and inrease in the negative diretion;this ow makes lear the struture of the veloity orrelation funtions inFig. 1.This vortial ow is reminisent of similar strutures produed in simu-lations of elasti partiles [20, 21℄ by Alder and Wainwright. In their simu-
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Figure 5. A lose-up on the boxed regions in Fig 4 reveals that for inelasti partiles,large vorties form, one on eah side of the partile. The longest vetor in the veloity�eld for inelasti partiles represents a veloity nine times larger than that representedby the longest vetor for elasti partiles.
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Figure 6. Snapshots of simulations with white noise driving and with elasti partiles;large oherent strutures are visible for the dissipative system on the left. Partiles withpositive horizontal veloity are blak, partiles with negative horizontal veloity are white.(� = 0:5; T = 1:05)lations, they disovered di�usive behavior di�erent from that predited bykineti theory. The di�usion onstant may be written in terms of the slopeof the exponentially deaying autoorrelation funtion. However, Alder andWainwright found deviations from exponential deay, and traed the devi-ations to a vortial ow. If partiles a and b are initially unorrelated, anelasti ollision will orrelate eah partile's post ollision veloity with theother partile's pre-ollision veloity; both partiles now have a orrelationwith the original veloity of partile a. As partile b ollides with otherpartiles, they gain information about partile a's initial veloity. Severalollision times later, this information has been transmitted to many parti-les.There are two main di�erenes between the vorties in ows of elastipartiles and those in ows of inelasti partiles. Alder and Wainwrightprodued the ow �eld given byu(t0)i = R�(i;t)v(x� xi(t); y � yi(t); t0): (7)For t0 = t, Eq. 5 is reovered; for elasti partiles, no struture is apparent. Itis only at later times, t0 > t, that a vortex appears in u(t0). For the inelastipartiles, however, struture is lear at t0 = t. The seond di�erene is thestrength of the vortex. The strongest veloity in Alder and Wainwright'svortex was about 2% of the original veloity, while for inelasti partiles,the strongest veloity an be about 40% of the entral veloity.
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