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When a liquid is cooled well below its melting temperature at a rate that exceeds the critical cooling
rate Rc, the crystalline state is bypassed and a metastable, amorphous glassy state forms instead.
Rc (or the corresponding critical casting thickness dc) characterizes the glass-forming ability (GFA)
of each material. While silica is an excellent glass-former with small Rc < 10−2 K/s, pure metals
and most alloys are typically poor glass-formers with large Rc > 1010 K/s. Only in the past thirty
years have bulk metallic glasses (BMGs) been identified with Rc approaching that for silica. Recent
simulations have shown that simple, hard-sphere models are able to identify the atomic size ratio
and number fraction regime where BMGs exist with critical cooling rates more than 13 orders
of magnitude smaller than those for pure metals. However, there are a number of other features
of interatomic potentials beyond hard-core interactions. How do these other features affect the
glass-forming ability of BMGs? In this manuscript, we perform molecular dynamics simulations
to determine how variations in the softness and non-additivity of the repulsive core and form of the
interatomic pair potential at intermediate distances affect the GFA of binary alloys. These variations
in the interatomic pair potential allow us to introduce geometric frustration and change the crystal
phases that compete with glass formation. We also investigate the effect of tuning the strength
of the many-body interactions from zero to the full embedded atom model on the GFA for pure
metals. We then employ the full embedded atom model for binary BMGs and show that hard-core
interactions play the dominant role in setting the GFA of alloys, while other features of the interatomic
potential only change the GFA by one to two orders of magnitude. Despite their perturbative effect,
understanding the detailed form of the intermetallic potential is important for designing BMGs with
cm or greater casting thickness. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4935002]

I. INTRODUCTION

When metallic liquids are cooled at rates R exceeding the
critical cooling rate Rc, crystallization can be bypassed and
amorphous alloys are formed.1 Pure metals and most alloys are
extremely poor glass formers with Rc > 1010 K/s. In contrast,
a number of bulk metallic glasses (BMGs) have been identified
with Rc < 1 K/s and critical casting thickness dc > 1 cm,
which enables them to be employed in commercial applica-
tions.2,3 The discovery of novel BMGs with optimized casting
thickness and mechanical properties has largely been a trial-
and-error process.4,5 Although combinatorial deposition and
characterization techniques6,7 now allow efficient exploration
of parameter space, there are an exponentially large number of
possible BMG-forming atomic compositions.8 Thus, a quanti-

a)K. Zhang and M. Fan contributed equally to this work.

tative and predictive understanding of the glass-forming ability
(GFA) of BMG-forming alloys is necessary to narrow down the
vast parameter space.

Silica and polymers possess critical cooling rates that are
more than 15 and 10 orders of magnitude lower, respectively,
than those for pure metals (Fig. 1). Network bonding in sil-
ica and chain entanglement in polymers provide the phys-
ical mechanisms to inhibit crystallization.16–18 In contrast, the
main source of geometric frustration in alloys is the mismatch
between atomic sizes.19–24 Molecular dynamics (MD) simu-
lations of binary hard spheres have shown that tuning the
atomic size ratio can decrease Rc by more than 13 orders of
magnitude.15 Packing of hard spheres can also rationalize the
correlation between the number of components, their atomic
size ratios, and the GFA of BMGs.8

Although the packing of hard spheres plays an impor-
tant role in determining the GFA of alloys, it is obvious that

0021-9606/2015/143(18)/184502/10/$30.00 143, 184502-1 © 2015 AIP Publishing LLC
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FIG. 1. Schematic diagram of crystalline order (such as bond orientational
order9) versus the cooling rate R in K/s for several materials. The critical
cooling rate Rc at which there is a rapid rise in the crystalline order is
inversely correlated with the material’s critical casting thickness dc. Smaller
Rc (and larger dc) indicate enhanced glass-forming ability (GFA). Pure
metals, e.g., Ta, are extremely poor glass formers.3 The GFA of the first
fabricated metallic alloy Au80Si20

10 is similar to that of water11 but is a poor
glass-former compared to polymers12 and silica.13 The best bulk metallic
glasses (BMGs), e.g., Pd40Cu30Ni10P20,14 possess cm or greater critical cast-
ing thicknesses and <1 K/s critical cooling rates (solid gray bars). In recent
simulations, we have shown that hard-core atomic interactions can account
for more than 13 orders of magnitude variation in Rc (thick dashed line)
from 100 K/s for typical BMGs to 1013 K/s for pure metals.15

metals possess additional features that are not represented by
hard-sphere interactions. Other features of metallic interac-
tions, such as metallic bonding,25 the form of the interatomic
pair potential, and many-body interactions,26 can change the
crystalline structure that competes with glass formation and
change the prediction of Rc by several orders of magnitude
from the hard-sphere value. Compared to the ∼13 orders of
magnitude variation in Rc that results from the packing of hard-
spheres, changes to Rc are small, but not negligible and may
explain the crucial differences between an amorphous film and
a bulk metallic glass. Since the critical casting thickness dc is
negatively correlated with Rc and increasing Rc by two orders
of magnitude can reduce dc by one order of magnitude,27

more accurate models of intermetallic potentials are needed to
identify BMGs with dc > 1 cm (Fig. 1).

The interatomic potential in the embedded atom model
(EAM) is frequently implemented in computational studies
of the structural and mechanical properties, as well as the
dynamics, of metallic systems.26 The EAM potential energy
includes a pairwise-additive term, which is in general different
from the hard-sphere and Lennard-Jones (LJ) pair potentials
(Fig. 2(a)), and a many-body contribution from the electron
charge density, which is fitted to ab initio calculations of

lattice parameters, elastic constants, and other thermodynamic
properties.28,29

In this manuscript, we seek to identify the key features of
the pairwise and many-body interactions that strongly influ-
ence the GFA of alloys. For example, we investigate the effects
of the softness of the pairwise repulsive core, pairwise non-
additivity, and the form of the pairwise intermediate-range
repulsion on the GFA. We then measure the GFA for the full
embedded atom models of several pure metals and BMGs
to determine the contribution of the many-body interactions
to the GFA. We find that the changes in the GFA arising
from variations in the pair and many-body contributions of the
embedded atom model are small compared to the 13 orders
of magnitude change in GFA between monoatomic and binary
and ternary hard-sphere systems. However, these perturbations
to the GFA may still be important for discovering new bulk
metallic glass formers.

The manuscript includes three additional sections af-
ter the Introduction. First, in Sec. II, we describe the hard-
sphere, repulsive Lennard-Jones (RLJ), Lennard-Jones, and
Dzugutov-Shi (DZ) potentials used to vary the form and non-
additivity of the pairwise interactions. We also introduce the
embedded atom model for pure metals and alloys. For each
interatomic potential, we discuss the methods employed to
measure the critical cooling rate Rc. We then report the results
for the GFA for all interaction potentials in Sec. III. We
conclude the manuscript in Sec. IV.

II. MODELS AND METHODS

As described above, the embedded atom model for
metallic systems includes pairwise and many-body interac-
tions. In this section, we define three metrics (core softness,
non-additivity, and intermediate-range repulsion) to charac-
terize the form of the pairwise interactions. We describe molec-
ular dynamics simulations of monodisperse and binary sys-
tems interacting via generalized Lennard-Jones or Dzugutov-
Shi30,31 potentials to quantify the effects of the softness of the
repulsive core and strength of the intermediate-range repulsion
on the GFA. We also introduce molecular dynamics simula-
tions of binary hard spheres to study variations in the GFA
from non-additive pairwise interactions. We estimate values
for the pairwise core softness, non-additivity, and form of
the intermediate-range repulsive interactions from fits to the
pairwise contributions of the EAM for pure metals and binary
BMGs. We also introduce the Lennard-Jones and full EAM
potentials that we employ to study the effects of many-body
interactions on the GFA.

A. LJ and RLJ potentials

To tune the softness of the pairwise repulsive core,32 we
employ the generalized m-n LJ potential (Fig. 2(b)),

um−n
LJ (ri j) =




ϵ


2

m
6

n
m − n

(
σi j

ri j

)m
− 2

n
6

m
m − n

(
σi j

ri j

)n
, ri j ≤ rm,

uLJ, ri j > rm,
(1)
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FIG. 2. (a) The pairwise potentials u(ri j) (in eV) as a function of interatomic separation ri j for Zr–Zr (solid line), Cu–Cu (dotted line), and Zr–Cu (dashed line)
interactions for the embedded atom model for Zr–Cu alloys.29 (b) Generalized Lennard-Jones (Eq. (1)) (dashed lines) and repulsive Lennard-Jones (Eq. (2))
(dotted lines) interatomic potentials for several values of the core softness exponent m = 1, 3, 5, 8, and 12 (from left to right) compared to the hard-sphere
potential (thick solid line). (c) Dzugutov-Shi interatomic potential (Eq. (6)) (solid line) decomposed into the Lennard-Jones (dotted line) and sinusoidal “bump”
potentials (dashed line).

where σi j = (σi + σ j)/2, σi is the diameter of atom i, and ϵ
is the energy scale of the interaction. The interaction potential
has a minimum um = −ϵ at rm = 21/6σi j. The exponent m (or
equivalently the curvature κ of the pair potential at the mini-
mum) controls the softness of the repulsive core, where smaller
m corresponds to softer interactions. Note that the general-
ized Lennard-Jones potential is fixed at uLJ(ri j) ≡ u12−6

LJ (ri j) for
ri j > rm. To separate the effects of the attractive interactions
from the repulsive core, we also studied the generalized m-n
RLJ potential33 as shown in Fig. 2(b),

um−n
RLJ (ri j) =




um−n
LJ (ri j) + ϵ, ri j ≤ rm

0, ri j > rm
. (2)

To obtain physical values for the softness exponent m, we
fit the repulsive part of the EAM pair potential of typical BMG-
forming elements to um−6

RLJ (r). As shown in Table I, we find
that m varies from approximately 3 to 14. The repulsive cores
for most metals appear softer than Lennard-Jones interactions
with m = 12.

TABLE I. Softness exponent m from the repulsive Lennard-Jones potential
(Eq. (2)) for the self-part of the pair potential contribution to the embedded
atom model for common atomic species found in BMGs.29 The exponent m
varies linearly with the curvature κ (given in units of ϵ/σ2

A) of the interatomic
potential at its minimum rm. References for the EAM potentials are provided
in columns 4 and 8. Several atom types possess multiple EAM potentials.

Atom κ m Reference Atom κ m Reference

Zr 38.77 8.14 29 Pb 35.30 7.41 34
31.77 6.67 34 Mg 42.69 8.97 34
66.91 14.05 28 Fe 31.41 6.60 34

Ag 48.77 10.24 29 Co 32.88 6.90 34
35.49 7.45 34 38.06 7.99 35
40.35 8.47 36 Ta 21.36 4.49 34

Al 33.48 7.03 29 15.64 3.28 37
20.65 4.34 34 24.56 5.16 38
10.89 2.29 39 Cu 28.66 6.02 34

Ni 34.36 7.21 29 Au 38.40 8.06 34
30.66 6.44 34 48.20 10.12 40
47.96 10.07 41 Ti 32.93 6.92 34

Pd 43.72 9.18 29 Mo 20.42 4.29 34
33.39 7.01 34 W 22.63 4.75 34

Pt 43.47 9.13 29 Nb 28.19 5.92 42
24.04 5.05 34

To investigate the effects of softness of the pairwise repul-
sive core on the GFA of metallic systems, we performed
MD simulations of N = 1372 spherical atoms with mass m0
that interact via the generalized Lennard-Jones and repulsive
Lennard-Jones potentials with n = 6 and a range of m values.
We studied three binary LJ systems with softness exponents
mA = mB = mAB = 12 (LJ12-6), mA = mB = mAB = 5 (LJ5-
6), and mA = 12, mB = 5, and mAB = 8 (LJ12-6/LJ5-6). We
set the atomic diameter ratio to be α = σB/σA = 0.95 and
varied the number fraction of small atoms xB = NB/N from
0 to 1. Temperatures and times are given in units of ϵ/kB

and σA

√
m0/ϵ , respectively. After equilibrating the systems at

high temperature T0 = 2, the liquids were cooled exponentially
T(t) = T0 exp(−Rt) with rate R to low temperature, Tf = 0.01,
using the Gaussian constraint thermostat43 with time step
∆t = 0.001. Constant volume V simulations at number density
ρσ3

A
= Nσ3

A
/V = 1 were performed for both the LJ and RLJ

models. For LJ systems, we also cooled systems with the
constraint that the pressure p (in units of ϵ/σ3

A
) decreased

exponentially in time from an initial pressure p0 = 1 to final
pressure pf = 0.001 according to

p(t) = p0 exp

−

log(p0/pf )
log(T0/Tf ) Rt


(3)

using a Gaussian constraint barostat.43 A cooling rate of R = 1
in the units used in the MD simulations corresponds to a cool-
ing rate of 1015 K/s using σA ∼ 3 × 10−10 m, ϵ/kB ∼ 103 K,
and molar mass M ∼ 10−1 kg/mol, which are typical values
for BMGs.32

B. Non-additive binary hard spheres

The sizes of metallic atoms are often estimated from the
first peak of the radial distribution function g(r) of crystalline
and disordered solids.44 In binary alloys with species A and
B, the repulsive core σAB between atoms A and B can differ
from the average diameter σAB = (σA + σB)/2. We quantify
the non-additivity of the pairwise repulsive core using the
parameter

Σ =
σAB

σAB
− 1. (4)

Many binary alloys possess Σ < 0, which indicates that the
repulsive core σAB between A and B atoms is smaller than the
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TABLE II. Atomic diameters (σA and σB in Å) determined by the first peak
of the radial distribution function g (r ) obtained from EAM simulations of
several binary alloys.29 We also list σAB from g (r ), the diameter ratio α,
and the non-additivity parameter Σ.

Alloy σA σB σAB α Σ

Zr–Cu 3.15 2.49 2.75 0.79 −0.025
Ni–P 2.57 2.19 2.23 0.85 −0.063
Zr–Ni 3.23 2.43 2.69 0.75 −0.049
Zr–Al 3.21 2.69 2.93 0.84 −0.007
Ag–Al 2.87 2.69 2.69 0.94 −0.032
Mg–Cu 3.11 2.47 2.69 0.79 −0.05
Mg–Ti 2.97 2.77 2.99 0.93 0.042
Y–Mg 3.51 3.03 3.27 0.86 0
Pd–Si 2.97 2.39 2.51 0.80 −0.063
Zr–Pt 3.39 2.91 2.73 0.86 −0.1333
Cu–Ni 2.51 2.45 2.49 0.98 0.004
Mg–Al 2.99 2.81 2.99 0.94 0.031

average diameter. We list σA, σB, σAB, and Σ for several bi-
nary alloys obtained from EAM calculations of g(r) in Table II.
Non-additive binary hard spheres have been shown to form
exotic crystalline structures, in particular intermetallic com-
pounds.45,46 In addition, non-additivity due to bond shortening
with Σ < 0 can lead to unusual intermediate-range order in
BMGs.47–49 The well-studied Kob-Andersen model for Ni80P20
glasses also has Σ = −0.149.50

To study the effects of nonadditivity on the GFA, we
compressed N = 500 binary hard spheres with mass m0 that
interact pairwise via

uHS(ri j) =



∞, ri j ≤ σi j

0, ri j > σi j

(5)

over a range of diameter ratios α and number fractions of
the small sphere xB using event-driven MD simulations. We
first equilibrated liquid states at packing fraction φ = 0.25. To
compress the system, we ran the MD simulations at constant
volume for a time interval τ, and then compressed the system
instantaneously until the closest pair of spheres came into
contact.15,23 We performed successive compressions until the
pressure increased to 103, which corresponds to (φJ − φ)/φJ

< 10−3, where φJ is the packing fraction at the onset of jamm-
ing. We varied the compression rate R ≡ 1/τ over 5 orders of
magnitude.15 We report R in units of


kBT/m0σ

2
A
. Note that

in these units, R = 1 corresponds to a cooling rate of 1012 K/s
for alloys.51

C. DZ potential

The pair potential of many metallic systems includes
intermediate-range repulsive interactions52 in addition to short-
range attractive interactions, which can give rise to interme-
diate-range positional order.53,54 Intermediate-range pairwise
repulsive interactions are often modeled using the Dzugutov
potential.30,55–57 Shi et al. introduced a modified version of the
original Dzugutov potential that allows one to continuously
tune the interaction potential between the LJ potential to one
that includes intermediate-range repulsion.31 The DZ potential

is given by

uDZ(ri j) = uLJ(ri j) + ubump(ri j), (6)

where the “bump” potential ubump(ri j)models the intermediate-
range repulsive interactions using a sinusoidal pulse,

ubump(ri j) =



ξsin2
(
π

ri j/σi j − λ

δ − λ

)
, λ ≤ ri j/σi j ≤ δ

0, otherwise
,

(7)

of the strength ξ within the range λσi j ≤ ri j ≤ δσi j. The
location of the peak and width of ubump are given by (λ + δ)/2
and δ − λ. To obtain physical values for ξ, λ, and δ, we fit the
DZ potential to the EAM pair potential for several elements.
We show values of ξ, λ, and δ for elements commonly found
in BMGs in Table III. Pb, Pd, Pt, Mg, Fe, Ta, Au, Ti, Mo, W,
and Nb do not have significant intermediate-range repulsive
interactions.

To study the effects of intermediate-range repulsive inter-
actions on the GFA, we performed MD simulations of N
= 1372 spherical atoms that interact pairwise via the DZ poten-
tial. We followed the same cooling protocol as used for the
simulations of Lennard-Jones systems with pressure that de-
creases exponentially in time as discussed in Sec. II A. We fixed
the strength of the intermediate-range repulsive interactions
at ξ = 0.35ϵ and varied λ and δ to tune the location of the
peak (λ + δ)/2 and range δ − λ of ubump. We also studied
binary mixtures composed of A atoms that interact via the DZ
potential with ξ = 0.35ϵ , λ = 1.2, and δ = 2.15 and B atoms
that interact via the LJ potential with diameter ratio α = 0.95.
The number fraction of small atoms xB is varied from 0 to 1 in
steps of 0.2.

D. LJ-EAM and EAM potential

The total potential energy U employed in the embedded-
atom model for metals includes pairwise and many-body
contributions

U =

i< j

u(ri j) +

i

Fi(ρei ), (8)

where the many-body embedding function Fi depends on the
electron density associated with each atom i (normalized by

TABLE III. Values of the parameters ξ, λ, and δ (Eq. (6)) that describe
the strength and range of the Dzugutov-Shi interatomic potential fit to the
self-part of the pair potential of the embedded atom model for several atomic
species. The fifth column provides references for the EAM for each atom
type.

Atom ξ (eV) λ δ Reference

Zr 0.42 1.16 2.24 29
Ag 0.16 1.29 2.20 29
Cu 0.43 1.18 1.73 29
Ni 0.38 1.19 1.72 29
Al 0.10 1.76 2.35 29

0.26 1.29 1.99 39
Co 0.12 1.56 2.66 35
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e/σ3
A
) and ρei =


j,i

ρe(ri j).26,28,29 To quantify the effects of the

many-body interactions on the GFA, we focused on the LJ-
EAM potential, where u(ri j) = uLJ(ri j), Fi(ρei ) = Aρei (ln ρei
− rm/σA)/2, and ρe(ri j) = C exp[−β(ri j − rm)], where C and
rm are calibrated to experimental data on alloys.58,59 We set the
atomic diameter σA = 2.8 Å and attraction depth ϵ = 0.2 eV
for the LJ potential to match the pair potential of typical metals
such as Zr. The parameters A and β control the many-body
interaction strength and inverse decay length of the electron
density, respectively.

We performed MD simulations of the LJ-EAM for several
pure metals and of the full EAM for several binary alloys using
the LAMMPS simulation software.60 We cooled systems in
the liquid state to low temperature at constant zero pressure at
different rates R. The initial and final temperatures for several
systems (specified by A and β) are summarized in Table IV.
For our studies of the full EAM potential, we set N = 4000
and fixed the initial and final temperatures at Ti = 2000 K and
Tf = 300 K.

E. Critical cooling rate

To calculate the critical cooling rate Rc for each metallic
system, we initialized the liquid state at high temperature,
cooled the system exponentially to low temperature at a given
rate R at either fixed volume or exponentially decaying pres-
sure as in Eq. (3), and measured the global bond orientational
order parameter Q6.9 For hard-sphere interactions, we com-
pressed the systems so that the packing fraction approached
that at jamming onset exponentially, which is thermodynam-
ically equivalent to cooling systems exponentially.61 For all
systems studied, the average global bond orientational order
parameter Q6 versus log R possesses a sigmoidal shape with
a midpoint defined by Rc. Below, we show results for Rc for
the pair potentials described in Secs. II A-II C and the full and
LJ-EAM potential in Sec. II D.

III. RESULTS

A. Core softness

To investigate the effects of softness of the repulsive core
on the GFA, we first measured the critical cooling rate Rc

for monodisperse systems that interact via the generalized LJ
(Eq. (1)) and RLJ (Eq. (2)) pairwise potentials as a function
of the softness exponent for m = 1, 3, 5, 8, 10, and 12. As

TABLE IV. The initial and final temperatures, Ti and Tf , employed during
the cooling protocol in the molecular dynamics simulations of the LJ-EAM
potential with many-body interaction strength A and electron density inverse
decay length β.

A (eV) β (Å−1) Ti (K) Tf (K) A (eV) β (Å−1) Ti (K) Tf (K)

0 4 2000 300 0.66 2 2000 300
1.32 2 2305 343 1.98 2 3285 479
0.66 4 2000 300 1.32 4 2257 336
1.98 4 3253 475 0.66 6 2000 300
1.32 6 2242 337 1.98 6 3271 472

FIG. 3. The critical cooling rate Rc (in units of 1015 K/s) as a function of the
repulsive core softness exponent m in monodisperse systems with generalized
repulsive Lennard-Jones (triangles) and Lennard-Jones (squares) interactions
cooled at constant density ρσ3

A
= 1 and Lennard-Jones interactions with an

exponentially decaying pressure given in Eq. (3) (circles). Variations in the
softness exponent lead to different crystalline structures that compete with
glass formation including face-centered cubic (FCC; empty symbols) and
body-centered cubic (BCC; filled symbols).

shown in Fig. 3, when cooling at constant number density
ρσ3

A
= 1, the GFA increases weakly (Rc decreases by less than

an order of magnitude) as the repulsive core becomes softer
(m decreases). When cooling a LJ system with a pressure that
decays exponentially in time as in Eq. (3), the dependence of Rc

on the softness exponent m is even weaker, except for systems
with extremely soft core repulsions with m = 1. In contrast,
most atomic species that are found in BMGs possess m > 4
(Table I).

As shown in Fig. 3, the crystalline structures that compete
with glass formation in systems with core-softened RLJ inter-
actions at ρσ3

A
= 1 are face-centered cubic (FCC) for all expo-

nents m studied. In addition, FCC crystals compete with glass
formation in LJ systems, but as the repulsive core softens,
body-centered cubic (BCC) crystals become more stable.62 We
find that BCC is the crystal type that competes with glass
formation for m = 3 LJ systems cooled at constant density
ρσ3

A
= 1 and for m = 3 and 5 LJ systems cooled such that the

pressure obeys Eq. (3).
Structural characterizations of atomic systems that inter-

act via the generalized LJ potential are shown in Fig. 4 for
cooling rates R > Rc. As the repulsive core of the potential be-
comes softer (i.e., m decreases), the attractive well of the poten-
tial widens to include second-neighbor attractive interactions,
which can compensate repulsive first-neighbor interactions.
Indeed, LJ systems with m = 1 and 3 exhibit phase separation
into dilute and compressed regions when cooled at fixed den-
sity ρσ3

A
= 1 and volume contraction, where the first neighbor

separations are smaller than the location of the potential mini-
mum, when cooled such that the pressure obeys Eq. (3). In fact,
the m = 3 LJ system displays two isostructural glassy states,
contracted and expanded, with different densities as shown in
the inset to Fig. 4. Similar isostructural transitions have been
found in equilibrium systems with narrow-ranged attractive
interactions.63 Large density differences between polymorphs
in metallic glasses such as those found in Ce55Al45 are often
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FIG. 4. Radial distribution functions g (ri j) (vertically shifted for visualiza-
tion) for monodisperse spherical atoms with diameter σ that interact via the
generalized m-6 LJ potential (Eq. (1)) with m = 1 (top), 3 (middle), and 12
(bottom) cooled at rate R = 0.1 > Rc. Compared to the m = 12 LJ system,
the soft m = 1 LJ system shows strong volume contraction with the first peak
shifted to smaller separations ri j. Systems with intermediate softness m = 3
display two isostructural states: contracted high density (dotted line) and
expanded low density (dashed line) glasses. The left and right insets show
snapshots of the contracted and expanded m = 3 LJ systems, respectively.

attributed to electronic many-body interactions.64 However,
here, we show that softening the pairwise repulsive core (which
increases the range of the attractive well) can also give rise to
polymorphs with different densities.

We also investigated the effects of core softness on the
glass-forming ability in binary mixtures that interact via the
generalized m-6 LJ potential. We focused on three mixtures
with diameter ratio α = σB/σA = 0.95: (1) conventional LJ
systems with m = 12, (2) core softened LJ systems with m
= 5, and (3) mixtures of LJ systems with m = 12 (A species)
and m = 5 (B species). While FCC is the crystalline structure
that competes with glass formation for binary LJ systems
with m = 12, BCC is the competing crystalline structure for
binary mixtures with m = 5 for all number fractions xB as
shown in Fig. 5. For both m = 12 and m = 5 systems, the
variation in Rc(xB), which is less than an order of magnitude, is
controlled by the diameter ratioα = 0.95. In binary mixtures of
LJ systems with m = 12 and m = 5 interactions, FCC remains
the crystalline structure that competes with glass formation,
except when xB ≈ 1. However, because of the incompatibility
between FCC and BCC crystalline structures, the GFA for
the m = 12 and m = 5 LJ mixtures is significantly enhanced
compared to glasses with m = 12 or m = 5 interactions alone.
For example, Ni–Ta is a good glass former despite the fact that
it possesses a diameter ratio near unity (α ≈ 0.9).65 Incom-
patibility between competing BCC and FCC crystal struc-
tures is a possible cause of the enhanced GFA. As shown
in Table I, Ni has a relatively large pairwise repulsive expo-
nent (6 < m < 10) with equilibrium FCC structure, while Ta
has a relatively small exponent (3 < m < 5) with equilibrium
BCC structure.44 Since the softness exponents of the pairwise
interactions vary significantly from one element to another
(Table I), softness-induced competing crystal incompatibility
can enhance the GFA of binary and multi-component BMG-
forming alloys.

FIG. 5. The critical cooling rate Rc for binary mixtures of spherical atoms
that interact via the generalized m-6 LJ potential (Eq. (1)) at diameter ratio
σB/σA= 0.95 is plotted as a function of the number fraction of small atoms
xB. We show m = 5 (squares) and 12 (triangles) LJ systems, mixtures (dia-
monds) of m = 12 (species A) and 5 (species B), as well as mixtures (circles)
of spheres with DZ (A species) and m = 12 LJ (B species) interactions. Open
and filled symbols indicate that the crystalline structure that competes with
glass formation is FCC and BCC, respectively.

B. Non-additivity

We performed event-driven molecular dynamics simula-
tions of binary non-additive hard spheres (Sec. II B) to inves-
tigate the effects of non-additivity of the pairwise repulsive
interactions on the GFA of alloys. We measured the critical
cooling rate Rc of non-additive binary hard spheres with diam-
eter ratios α = σB/σA = 1.0, 0.97, 0.95, 0.93, 0.9, and 0.5
and number fractions of the small spheres xB = 0.5 and 2/3
over a range of non-additivity parameters Σ. Since Σ > 0 is
rare among binary alloys (Table II), we expect that hard-sphere
systems with positive non-additivity are poor glass-formers.
For example, we find that systems with α = 1 and Σ = 0.05
display strong demixing between A and B particles and are not
good glass formers.

Our previous studies of additive binary hard spheres (Σ
= 0) have shown that well-mixed FCC solid solutions are the
crystal structures that compete with glass formation when α
& 0.8, while the systems tend to demix when α . 0.8.15 For Σ
< 0 andα = 1.0, 0.97, 0.95, 0.93, and 0.9, the GFA improves as
Σ becomes more negative, and the competing crystal structure
remains the FCC solid solution (Fig. 6). The change in Rc

with decreasing Σ also increases as α decreases with roughly
an order of magnitude difference in Rc between systems with
Σ = 0 and Σ = −0.05 at α = 0.9. Enhancement of the GFA
arising from non-additivity of the repulsive cores (Σ < 0) has
also been observed in LJ systems.66

For binary systems with large atomic size differences
(i.e., α ≪ 0.8), the variation of Rc with Σ is opposite to that
obtained for binary systems with small atomic size differences.
As shown in Fig. 6, we find that Rc grows with increasing
Σ at α = 0.5. For α = 0.5 and Σ < 0, compound crystals are
the ordered structures that compete with glass formation since
negative non-additivity promotes mixing. As an example,
although the AB2 compound is the densest crystal for binary
hard spheres with α = 0.5 and Σ = 0, it is not kinetically
accessible during compression due to the strong drive for
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FIG. 6. Critical cooling rate Rc (in units of 1012 K/s) plotted as a function
of the nonadditivity parameter Σ for binary hard-sphere systems for several
diameter ratio and small-sphere number fraction combinations: α = 1.0 and
xB = 0.5 (crosses), 0.97 and 0.5 (squares), 0.95 and 0.5 (pentagons), 0.93
and 0.5 (downward triangles), 0.90 and 0.5 (diamonds), and 0.5 and 2/3
(upward triangles). The inset shows snapshots of (top) demixed and (b)
compound crystals that form for R < Rc at Σ = 0.0 and −0.05, respectively,
with diameter ratio α = 0.5.

demixing.15,67,68 However, when Σ becomes negative (e.g.,
Σ = −0.05), we find that the AB2 compound forms easily for
the compression rates that we studied, as shown in the inset
to Fig. 6. Thus, the formation of intermetallic compounds in
alloys can be enhanced by pairwise negative non-additivity
among different atomic species.

C. Intermediate-range repulsive interactions

We also investigated crystallization and glass formation
as a function of the form of intermediate-range repulsive pair-
wise interactions (Sec. II C). We first performed molecular
dynamics simulations of monodisperse spheres interacting via
the DZ potential (Eq. (6)) at fixed strength ξ = 0.35ϵ and
varying peak location (λ + δ)/2 and width δ − λ. In Fig. 7,
we plot the critical cooling rate Rc as a contour plot versus
(λ + δ)/2 and δ − λ over ranges that are relevant to BMGs
(Table III). We find several regions of good glass-forming
ability (small Rc) and different crystal structures that compete
with glass formation. For a large region of parameter space,
FCC is the competing crystal structure. BCC is the compet-
ing crystal structure when the location of the peak in ubump

approaches third-neighbor separations at ri j ≈
√

3rm. We also
find an “8-4” crystal structure that competes with glass forma-
tion, with atom positions located on embedded octagons and
squares when they are projected into two dimensions. (See
the inset of Fig. 7.) In three dimensions, one can see that
the atoms forming the octagons and squares are located in
alternating stacked layers. (See Fig. 8 for a comparison of the
radial distribution functions for FCC, BCC, and 8-4 crystals.)
When the intermediate-range repulsion becomes too strong
(i.e., large δ), microphase separation becomes energetically
favorable compared to macroscale phase separation.69,70

We also studied the critical cooling rate Rc for binary
mixtures (e.g., Zr–Cu alloys), in which one component pos-
sesses intermediate-range repulsive interactions and the other

FIG. 7. Contour plot of the critical cooling rate Rc (in reduced units) for
monodisperse spheres that interact via the DZ potential (Eq. (6)) as a function
of the location of the peak (λ+δ)/2 and width δ−λ of ubump. The bounds for
the parameters are determined by λ > rm/σA= 1.12 and δ < rc/σA= 2.5.
Rc contours are interpolated from simulation data points. The symbols indi-
cate where FCC (triangles), BCC (squares), 8-4 (stars) crystalline structures,
and microphase separation (circles) are observed. Crosses indicate systems
for which the competing crystal structure is unknown and Rc is estimated
from the slowest cooling rate employed. The inset shows a snapshot of a 8-4
crystal that includes top (dark) and bottom (light) layers of atoms with square
symmetry (red squares).

component does not. We focused on binary systems with atoms
that interact via the DZ (A species) and LJ potential (B species)
with diameter ratio σB/σA = 0.95. For the DZ potential, we
set the parameters ξ/ϵ ≈ 0.4, λ ≈ 1.2, and δ ≈ 2.2 to mimic
those of Zr atoms (Table III). As shown in Fig. 5, Rc for
this binary mixture is suppressed by more than two orders
of magnitude compared to the pure system with LJ or DZ
interactions alone because the two species possess incompat-
ible equilibrium crystal structures (i.e., FCC and BCC). This
mechanism of incompatible equilibrium crystal structures may
explain the exceptionally good glass-forming ability of the
Zr–Cu system, even though it is a binary, rather than, multi-
component alloy.

D. LJ EAM for monoatomic systems

To determine the relative contributions of the pairwise
and many-body interactions to the GFA of alloys, we per-
formed molecular dynamics simulations of the LJ-EAM poten-
tial (Sec. II D) as a function of the many-body interaction
strength A and electron density inverse decay length β for
monoatomic systems. In Fig. 9, we show the critical cooling
rate Rc for monodisperse LJ-EAM systems as a function of A
for β = 2, 4, and 6 Å

−1
. We find that Rc ≈ 1013 K/s. Rc changes

by less than one order of magnitude as A and β are varied
over the range that is relevant for elements found in BMGs
even though the total potential energy per atom U/N varies
linearly with A. We also find that FCC crystals are the ordered
structures that compete with glass formation in monoatomic
LJ-EAM systems over the full parameter range for A and
β. Thus, we argue that many-body interactions have a weak
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FIG. 8. Radial distribution function g (ri j) (solid lines, left axis) and pair
potential u(ri j) (dashed lines, right axis) for monodisperse spheres that
interact via (a) the Lennard-Jones potential in a FCC crystal structure and via
the DZ potential with (b) λ = 6√2 and δ = 2.1 in a FCC crystal structure, (c)
λ = 1.2 and δ = 2.3 in a BCC crystal structure, and (d) λ = 1.5 and δ = 2.2
in a 8-4 crystal structure. The vertical dotted and dashed lines indicate the
BCC lattice spacings (relative to rm) 1:2/

√
3:2 and the FCC lattice spacings

1:
√

2:
√

3:2 up to third and fourth nearest neighbors, respectively.

influence on the GFA compared to the pairwise interactions
for monoatomic systems.

E. Full EAM for binary alloys

We also measured the critical cooling rate Rc for several
binary alloys as a function of the number fraction xB of the
small atomic species using the full EAM potential. We focused
on Zr–Cu, Mg–Al, and Cu–Ni alloys with atomic diameter
ratios that range from α = 0.79 to 0.98. In Fig. 10, we compare
Rc versus xB from simulations of the full EAM potential for
these alloys to Rc obtained from simulations of additive hard
spheres with comparable values of α.15

As expected, Rc for binary alloys with α ∼ 1 (i.e., Cu–Ni)
is nearly independent of xB. In addition, when the hard-
sphere simulations with α = 1 are calibrated to Ni, Rc from
simulations of the hard-sphere and EAM potentials agree
semi-quantitatively. From our previous simulations of hard
spheres,15 we know that Rc(xB) develops a deep minimum

FIG. 9. The critical cooling rate Rc from simulations of the LJ-EAM plotted
as a function of the many-body interaction strength A (in eV) for several
values of the electron density inverse decay length β = 2 (squares), 4 (circles),
and 6 Å

−1
(triangles). Rc from simulations of the full EAM for Zr (i.e.,

A≈ 1.32 eV and β ≈ 4 Å
−1

) is indicated by the horizontal dashed line.
Error bars give the standard deviation from 10 independent simulations with
random initial conditions. The inset shows the total potential energy U/N
per atom (for cooling rates R > Rc) versus A for the same values of β in the
main panel. U/N for the full EAM of Zr is given by the horizontal dashed
line.

that shifts to larger xB as α decreases from unity. For example,
when α = 0.9, Rc for hard-sphere systems at xB ≈ 0.6 is two
orders of magnitude less than the value when α = 1. Although
we are not able to simulate sufficiently slow rates, it appears
that Rc at the minimum in xB for Mg–Al with α = 0.94 will

FIG. 10. The critical cooling rate Rc (in K/s) for several binary alloys,
including Zr–Cu with atomic diameter ratio α = 0.79 (circles), Mg–Al with
α = 0.94 (triangles), and Cu–Ni with α = 0.98 (diamonds), is plotted as a
function of number fraction of small atoms xB using molecular dynamics
simulations of the full EAM. Error bars on Rc are obtained from the standard
deviation from 5 independent simulations. The EAM source files are given in
Refs. 29, 34, and 71–73. As a comparison, Rc for additive binary hard spheres
with α = 1.0, 0.9, and 0.79 are shown as dashed lines. We also indicate when
FCC or HCP (open symbols) and BCC (filled symbols) crystal structures
compete with glass formation.
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decrease by at least two orders of magnitude and the minimum
in Rc(xB) will occur at xB > 0.5. We also find similar results
for Rc for hard spheres with α = 0.79 and for EAM of Zr–Cu
with a deep minimum in the range 0.2 < xB < 0.8.

We also determined the crystal structures that compete
with glass formation in the full EAM simulations of binary
alloys. We find that FCC (or HCP) is most often the competing
crystal structure, as in simulations of additive binary hard
spheres, but we also find exceptions. In particular, we show that
on the Zr-rich side of Zr–Cu, BCC crystal structures compete
with glass formation. The BCC equilibrium structure for the
Zr–Cu alloys can likely be attributed to the pairwise part of
the EAM potential. For example, the pair potential for Zr
possesses intermediate-range repulsive interactions with the
location of the peak (λ + δ)/2 = 1.70 and width δ − λ = 1.08
(Table III) in a region of parameter space that has been shown
to display BCC crystal structure (Fig. 7).

IV. CONCLUSION

The hard-sphere model has provided a predictive descrip-
tion of crystallization and glass formation in simple liquids.33

In addition, we have shown in recent studies that the additive
hard-sphere model can explain more than 13 orders of magni-
tude variation in the critical cooling rate Rc, which nearly spans
the full range of GFA from that for pure metals to that for the
best BMGs.15 We also showed that the best binary and ternary
BMGs occur in the region of parameter space (i.e., diameter
ratio and number fraction) with the smallest values of Rc for
hard spheres.

However, in metallic systems, there are a number of addi-
tional features of the interatomic potential beyond hard-core
repulsions, including softness, non-additivity, and range of
the pairwise interactions. For example, metallic atoms typi-
cally appear softer (with smaller values of the exponent of
the repulsive core) than the commonly used LJ pair potential
and possess several per cent negative non-additivity due to
shortening of metallic bonds.47 In addition, Friedel oscillations
in metals give rise to intermediate-range repulsion at separa-
tions beyond the short-range attractive well.52 The interatomic
potential for metals also includes many-body interactions from
the electronic degrees of freedom. In this manuscript, we inves-
tigated how these additional features affect the GFA of pure and
binary metallic systems.

We performed molecular dynamics simulations of several
model systems to study the effects on the GFA for each of
the key features of the interatomic potential separately. For
example, we performed simulations of monodisperse and bi-
nary spheres that interact via the generalized LJ and DZ pair
potentials to quantify the effect of the softness of the repulsive
core and form of the intermediate-range repulsive interac-
tions on the GFA. We also performed MD simulations of non-
additive binary hard spheres to quantify the effects of non-
additivity on the GFA. We found that softness, non-additivity,
and form of the intermediate-range repulsions cause deviations
in Rc that are only 1–2 orders of magnitude from the additive
hard-sphere predictions.

While FCC is the most stable crystal structure for LJ
and hard-sphere systems, softening of the repulsive core gives

rise to novel contracted disordered structures, as well as the
formation of BCC crystals. We also showed that negative non-
additivity of the repulsive core in binary alloys improves the
GFA when the competing crystal structures are solid solutions.
However, when the atomic size ratio is in the demixing regime
(α < 0.8), negative non-additivity can favor the formation of
compound crystals and decrease the GFA. The crystal struc-
ture that competes with glass formation, and thus the GFA,
also depends sensitively on the form of the intermediate-range
repulsive interactions. We find that when the competing crystal
structures of each component in an alloy are incompatible (e.g.,
FCC and BCC), the GFA can be enhanced compared to hard-
sphere predictions.

We also investigated the relative contributions of the pair-
wise and many-body interactions to the GFA by performing
molecular dynamics simulations of the LJ-EAM potential. We
found that including the many-body interactions only changes
Rc by less than one order of magnitude compared to that
when the many-body interactions are not included. We also
calculated Rc for several binary alloys using the full EAM
potential and found qualitatively the same results as for binary
hard spheres. Thus, we argue that hard-sphere interactions
provide a qualitatively accurate model for predicting the GFA
of alloys. Other features of the interatomic potential (beyond
additive hard-core repulsion) give rise to only 1-2 orders of
magnitude variation of Rc, which is small compared to the
more than 13 orders of magnitude variation predicted by hard-
sphere systems. Despite this, including additional features to
the interatomic potential beyond hard-sphere interactions is
important for the design of new BMGs since precise quantifi-
cation of the critical casting thickness can determine whether
a new BMG is commercially viable.
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