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Abstract
Clinicians need to predict patient outcomes with high accuracy as early as possible after

disease inception. In this manuscript, we show that patient-to-patient variability sets a fun-

damental limit on outcome prediction accuracy for a general class of mathematical models

for the immune response to infection. However, accuracy can be increased at the expense

of delayed prognosis. We investigate several systems of ordinary differential equations

(ODEs) that model the host immune response to a pathogen load. Advantages of systems

of ODEs for investigating the immune response to infection include the ability to collect data

on large numbers of ‘virtual patients’, each with a given set of model parameters, and obtain

many time points during the course of the infection. We implement patient-to-patient vari-

ability v in the ODEmodels by randomly selecting the model parameters from distributions

with coefficients of variation v that are centered on physiological values. We use logistic

regression with one-versus-all classification to predict the discrete steady-state outcomes

of the system. We find that the prediction algorithm achieves near 100% accuracy for v = 0,

and the accuracy decreases with increasing v for all ODE models studied. The fact that mul-

tiple steady-state outcomes can be obtained for a given initial condition, i.e. the basins of

attraction overlap in the space of initial conditions, limits the prediction accuracy for v > 0.

Increasing the elapsed time of the variables used to train and test the classifier, increases

the prediction accuracy, while adding explicit external noise to the ODE models decreases

the prediction accuracy. Our results quantify the competition between early prognosis and

high prediction accuracy that is frequently encountered by clinicians.
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Introduction
The immune response to infection is a complex process that involves a wide range of length
scales from proteins to cells [1–4], tissues [5], and organ systems [6]. Despite enormous prog-
ress over the past 30 years in developing mathematical models for the immune response to
infectious disease such as tuberculosis [7, 8], HIV [9–13], and influenza [14, 15], these models
still have not been able to dramatically improve patient diagnosis, prognosis, and treatment
[16, 17]. Instead, vaccine and drug development often relies on costly trial-and-error methods
[18]. However, advances in gene sequencing capabilities [19], increasing speeds of computer
processors, and the ability to store enormous amounts of medical data promise dramatic
improvements in mathematical approaches to predicting and controlling the response to infec-
tious disease [20–23].

One promising mathematical approach is to use machine learning methods on large data
sets to classify patients as healthy or sick, perform early warning analyses for early detection of
infection, or identify the minimal set of genes responsible for a particular immune response.
[24, 25] However, many questions are left unanswered in such studies. For example, how much
and what kinds of data are required to have confidence in the machine learning predictions
and what are the underlying biophysical mechanisms for the relationships between variables
that are identified by these techniques? Further, it is difficult to determine differences in the
immune response that arise from patient-to-patient variations compared to slight differences
in the initial conditions of each patient.

In this manuscript, we focus on sets of ordinary differential equations (ODEs) as mathemat-
ical models for the immune response to infection. The advantages of ODEs are manifold: 1)
Each ‘virtual patient’ can be considered as a set of parameters in the set of ODEs; 2) There is
essentially no limit on the amount of data that can be collected on each virtual patient; 3) The
accuracy of machine learning predictions can be explicitly tested as a function of the number of
time points and initial conditions for each patient and the number of patients included in the
training and testing sets; and 4) analysis of the fixed points (or steady-state outcomes) and
basins of attraction of the ODEs can give biophysical insight into the immune response to
infection.

We will investigate several classes of ODE models for the immune response to infection.
First, we will describe a four-dimensional model for the acute inflammatory response to a path-
ogen load that was studied in detail in Ref. [26]. We will then consider reduced versions of this
model with fewer variables and parameters obtained by slaving one or more of the original
four variables, as well as changes to the form of the ODEs that alter the fixed point structure
and flows between them. For each model, a virtual patient is defined by one set of parameters.
Given an initial condition (values of the variables at time t = 0), the patient will evolve deter-
ministically to one of several possible discrete steady-state (t!1) outcomes, or fixed points.
Thus, for each patient, we can determine the basins of attraction that map initial conditions for
all of the variables to steady-state outcomes by numerically integrating the sets of ODEs.

We seek to determine the limits of the prediction accuracy of discrete steady-state outcomes
of ODEs as a function of patient variability (i.e. random fluctuations in parameter values)
using machine learning techniques. In the limit of zero patient variability, our simple classifica-
tion algorithm (logistic regression) can achieve nearly perfect prediction accuracy even when
the classification occurs on variables at short times. However, as the patient variability
increases, the basins of attraction for different patients yield different outcomes for a given ini-
tial condition as shown in Fig 1 for 5% patient variability in model (1) for the immune response
to infection. (See Materials and Methods). The fact that each set of initial conditions does not
possess a unique outcome places a fundamental limit on the predictability of patient outcomes.
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Thus, we find that the machine learning prediction accuracy decreases with increasing patient
variability. In contrast, for a given patient variability, the prediction accuracy increases with the
time used for classification as the systems converge to their steady-state outcomes (Fig 1). We
also show that at short times our classification algorithm saturates the theoretical limit for the
prediction accuracy in the presence of patient variation, and that the addition of external noise
only worsens the outcome prediction accuracy.

The manuscript is organized as follows. In the Materials and Methods section, we introduce
several ODE systems that have been used to model the host immune response to infection [26],
including their parameter sets and discrete steady-state outcomes, and describe how we imple-
ment patient variability in the ODE models. We also describe the logistic regression classifica-
tion algorithm that we implement to predict steady-state outcomes and measures of the
performance of the classification algorithm. In the Results section, we emphasize our three
main results that hold for all of the ODE models we studied: 1) patient variability leads to over-
lap of the basins of attraction for the steady-state outcomes, which limits the outcome predic-
tion accuracy, 2) the prediction accuracy increases with the time used for classification because
the basins of attraction separate with increasing time, and 3) the addition of external measure-
ment noise further reduces the prediction accuracy. In the Discussion section, we point out the
clinical implications of our work and describe important future studies of the prediction accu-
racy for ODE models with continuous, rather than discrete, steady-state outcomes.

Materials and Methods
Our studies focus on several ODE models with varying complexity for the immune response to
pathogen load that were first introduced in Ref. [26]. These ODE models can have up to four
coupled variables that represent the concentration of pathogen P, activated neutrophils N,
inflammation (or damage) D, and immuno-suppressor (cortisol) C. The models include inter-
actions between these four quanties. For example, the presence of pathogen P> 0 causes an
immune response, where neutrophils are activated and N increases. Neutrophils kill pathogen,
which decreases P, but also cause inflammation (damage), which increases D. The cortisol level
C increases when there is a high neutrophil level, which then reduces the neutrophil level.

Model (1) (Eqs 1–4) includes all four variables P, N, D, and C. The right-hand side of dP/dt
is a sum of three terms. The first term enables logistic growth of the pathogen. In the absence
of any other terms, any positive initial P0 will cause P to grow logistically to the steady-state
value P1. The second term mimics a local, non-specific response to an infection. For small

Fig 1. Time evolution of patient outcomes for a range of neutrophil (N) and cortisol (C) initial conditions for model (1). (left) Patient outcomes in the
long-time limit givenN andC initial conditions for model (1) are shaded green, orange, and purple for the steady-state outcomes of health, aseptic, and septic
death, respectively. The initial values of the pathogen load and damage are P0 = 0.35 and D0 = 0, and patient variability is set to v = 5%. The right six panels
indicate how the systems in the leftmost panel separate in theN andC plane as time increases, t = 10, 20, 50, 100, 250, and 500, from left to right.

doi:10.1371/journal.pone.0135861.g001
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values of P, the decrease is proportional to P. For larger values of P, the decrease caused by the
second term is constant. The third term models the decrease of P due to interactions with acti-
vated immune cells (neutrophils) N. Activated neutrophils N can directly decrease P. The anti-
inflammatory response, which is captured by the cortisol level C, mitigates this effect leading to
a decrease of P proportional to N�P/(1 + (C/C1)2).

Two terms determine the rate of change in neutrophils, dN/dt. The first term accounts for
the fact that neutrophils can be activated if a resting neutrophil cell encounters a pathogen P or
an already activated neutrophil N. Furthermore, tissue damage D also triggers the activation of
neutrophils. The second term describes the death of neutrophils N, with the decrease in N pro-
portional to the amount of neutrophils present.

The rate of change in damage dD/dt is also controlled by two terms. The first term mimics
positive feedback between D and N. Activated phagocytes cause collateral damage in the tissue.
Again, the effectiveness of N is mitigated by the anti-inflammatory response 1/(1 + (C/C1)2).
The saturation function fsmodels the fact that the effect of N on D saturates for large N. The
second term, -μd D, represents repair of the tissue.

The anti-inflammatory response C increases with the source term sc. In addition, there is a
natural death rate μc, which leads to a positive steady-state value of C in the absence of any
immune activation N or damage D. However, even small amounts of damage and neutrophils
will up-regulate C. In the case of small N + kcnd D, the production of C is proportional to N +
kcnd D, while for large values of N + kcnd D, changes in C are proportional to kcn. Again, the
effectiveness of N is mitigated by 1/(1 + (C/C1)2).

Model (1) has 21 parameters: kpm, kmp, sm, μm, kpg, P1, kpn, knp, knn, snr, μnr, μn, knd, kdn, xdn,
μd, C1, sc, kcn, kcnd, and μc with units provided in Table 1. Depending on the values of these
parameters, model (1) possesses different numbers of fixed points with varying stabilities.
However, we will focus on a specific parameter regime (given in Table 1) with three stable fixed
points, which correspond to the physiological steady-state outcomes: health, septic death, and
aseptic death.

Model (1)

dP
dt

¼ kpgP 1� P
P1

� �
� kpmsmP

mm þ kmpP
� kpnf ðN;CÞP ð1Þ

dN
dt

¼ snrR
mnr þ R

� mnN ð2Þ

dD
dt

¼ kdnfs f N;Cð Þð Þ � mdD ð3Þ

dC
dt

¼ sc þ
kcn f ðN þ kcndD;CÞ
1þ f ðN þ kcndD;CÞ

� mcC; ð4Þ

where

R ¼ f ðknnN þ knpP þ kndD;CÞ; ð5Þ

f ðV ;CÞ ¼ V=ð1þ ðC=C1Þ2Þ; ð6Þ

fsðVÞ ¼ V6=ðx6nd þ V6Þ: ð7Þ
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Models (2)-(5) given below are simplified versions of model (1). A summary of the dimen-
sion, number of parameters, and number of stable fixed points for each of these ODE models is
shown in Table 2. To obtain model (2) from (1), C is set to a constant �C ¼ 0:23 and the
remaining terms define a three-variable model with P, N, and D. For model (3), we set C ¼ �C
and D = 0, which gives a two-variable model for P and N. For model (4), we set C ¼ �C and
P = 0 to obtain a two-variable model for N and D. In this model, the value of the initial rise in
N can be thought of as the response to trauma. For model (5), we set C ¼ �C ¼ 0:1, D = 0, and
N = 0, which gives a one-dimensional model for P. This model only treats the innate immune
response with no activated neutrophils.

Model (2)

dP
dt

¼ kpgP 1� P
P1

� �
� kpmsmP

mm þ kmpP
� kpnf ðN; �CÞP ð8Þ

dN
dt

¼ snrR
mnr þ R

� mnN ð9Þ

dD
dt

¼ kdnfs f N; �Cð Þð Þ � mdD ð10Þ

Table 1. Mean values and units for the ODE parameters. The mean values μq and their units for the the
twenty-three parameters q for models (1)-(6). [y] indicates the dimension of y and time is measured in hours
(h).

Parameter q Mean Value μq Units

kpm 0.6 [M]−1 h−1

kmp 0.01 [P]−1 h−1

sm 0.005 [M] h−1

μm 0.002 h−1

kpg 0.6 h−1

P1 20.0 [P]

kpn 1.8 h−1

knp 0.1 [N] [P]−1

knn 0.0 1 [N]−1 h−1

snr 0.08 [N] h−1

μnr 0.12 h−1

μn 0.05 h−1

knd 0.02 [D]−1 h−1

kdn 0.35 [D] h−1

xdn 0.06 [N]

μd 0.02 h−1

C1 0.28 [C]

sc 0.0125 [C] h−1

kcn 0.04 [C] h−1

kcnd 48.0 [N] [D]−1

μc 0.1 h−1

k 1 [x]−1

B 1 [x]

doi:10.1371/journal.pone.0135861.t001
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Model (3)

dP
dt

¼ kpgP 1� P
P1

� �
� kpmsmP

mm þ kmpP
� kpnf ðN; �CÞP ð11Þ

dN
dt

¼ snrR3

mnr þ R3

� mnN; ð12Þ

where

R3 ¼ f ðknnN þ knpP; �CÞ: ð13Þ

Model (4)

dN
dt

¼ snrR4

mnr þ R4

� mnN ð14Þ

dD
dt

¼ kdnfs f N; �Cð Þð Þ � mdD; ð15Þ

where

R4 ¼ f ðknnN þ kndD; �CÞ: ð16Þ

Table 2. Summary of the ODEmodels. The dimension, number of parameters, number of stable fixed points, and values for the key parameters kpg and �C
for models (1)-(6).

Model Dimension Parameters Stable Fixed Points kpg �C

1 4 21 3 0.6 N/A

2 3 18 3 1.2 0.23

3 2 14 2 1.2 0.23

4 2 8 2 1.2 0.23

5 1 6 2 0.6 0.1

6 1 2 2 N/A N/A

doi:10.1371/journal.pone.0135861.t002

Fig 2. P,N,D, andC versus time for model (1) from 20 random initial conditions with no patient variation. For the parameter values in Table 1 but with
kpg = 1.2, model (1) possesses three fixed points: health (green lines), septic death (purple lines), and aseptic death (orange lines). The initial conditions are
sampled randomly within the cube: 0� P0� 0.42, 0� N0� 0.255, D0 = 0, and 0�C0 � 0.35. The three fixed points can be differentiated by the steady-state
values of P and D: health (P = 0, D = 0), aseptic death (P = 0, D > 0), and septic death (P > 0, D > 0). 5, 13, and 2 of the initial conditions evolve to the health,
septic death, and aseptic death fixed points, respectively.

doi:10.1371/journal.pone.0135861.g002
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Model (5)

dP
dt

¼ kpgP 1� P
P1

� �
� kpmsmP

mm þ kmpP
ð17Þ

In Fig 2, we show the time evolution of the four variables P, N, D, and C for model (1) for
twenty different sets of random initial conditions to illustrate its three stable fixed points
(health, septic death, and aseptic death) using the parameter values in Table 1. For trajectories
that approach the septic death fixed point, the pathogen and neutrophil levels grow rapidly.
The high neutrophil level causes cortisol to increase as well. Despite the high level, the neutro-
phils cannot reduce the pathogen load and the cortisol level is not large enough to reduce the
neutrophil level. As a result, the high neutrophil level causes significant damage at long times,
which is termed septic death due to the associated high pathogen level. Thus, the septic death
steady-state outcome is characterized by P> 0, N> 0, D> 0, and C> C1.

In the healthy state, the pathogen level can be reduced to zero by the neutrophils, and the
neutrophil level can be reduced to zero by cortisol. Once the neutrophil level is zero, the corti-
sol level returns to its background level and damage decreases to zero. Thus, the healthy state is
characterized by P = 0, N = 0, D = 0, and C = C1.

During the approach to the aseptic death fixed point, the neutrophil level is strong enough
to reduce the pathogen level to zero, but the cortisol level is insufficient to reduce the neutro-
phil level to zero, which leads to increasing damage. Thus, the aseptic death fixed point is char-
acterized by P = 0, N> 0, D> 0, and C> C1.

We also studied a generalization of model (5). Model (6) is a one-dimensional ODE for the
variable x with the same fixed point structure as model (5) (Eq 17), but different locations for
the fixed points, which can be obtained by tuning the two parameters k and B.

Model (6)

dx=dt ¼ B cos ðk x þ p=2Þ; if 0 � x � 2p=k

�B k sin ð5p=2Þðx � 2p=kÞ; if 2p=k < x:
ð18Þ

(

Model (5), which is a one-dimensional ODE for pathogen P, possesses three fixed points: P = 0,
0.3078, and 19.49 for the mean parameters in Table 1. As shown in Fig 3(a), the two outer fixed

Fig 3. Comparison of ODEmodels (5) and (6). The functions f(P) = dP/dt and f(x) = dx/dt for models (a) (5) and (b) (6). (See Eqs (17) and (18)). Stable and
unstable fixed points are marked by open and filled circles, respectively. Both models share the same fixed point topology: one stable fixed point at zero and
one at a positive value. The unstable fixed point lies between the two stable fixed points. The inset in (a) magnifies dP/dt near the origin.

doi:10.1371/journal.pone.0135861.g003
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points for model (5) are stable, and the middle fixed point, which is near zero, is unstable. For
model (6), the central unstable fixed point is moved to the midpoint of the two outer stable
fixed points and the shape of the function is changed to retain the fixed point structure.

Fig 4 summarizes the interactions between all of the variables in models (1)—(6). Green,
solid arrows connecting pairs of variables indicate upregulation, while red, dashed bars indicate
downregulation. For all models, both up and down self-regulation can also occur. If the sign of
the feedback (i.e. positive or negative) depends on the values of the variables and parameters,
self-regulation is represented using both an arrow and bar beginning and ending on a single
variable.

The outcomes of the immune response to infection can vary from patient to patient, even
with the same initial conditions (e.g. the pathogen load) (See Fig 5). To introduce patient vari-
ability into the ODE models, we select the parameters ({q}) in models (1)-(6) randomly from
independent Gaussian distributions with mean values μq in Table 1 and standard deviation

Fig 4. Interactions between variables for models (1)—(6). The green, solid arrows betwen pairs of
variables denote upregulation and the red, dashed bars indicate downregulation for ODEmodels (1)-(6).
Combined dashed and solid arrows indicate that either up or downregulation is possible depending on the
values of the variables and parameters.

doi:10.1371/journal.pone.0135861.g004

Fig 5. P,N,D, andC versus time for model (1) with 20 sets of randomly selected parameters with the same initial conditions. 10% patient variation
allows the system to reach the health, aseptic, and septic death fixed points with the initial condition P0 = 0.45, N0 = 0.45, D0 = 0, andC0 = 0.35, whereas only
the septic death fixed point is obtained for this initial condition with no patient variation. 4, 6, and 10 of the trajectories evolve to the health, septic death, and
aseptic death fixed points, respectively. The means of the parameters were set to those provided in Table 1, except the mean of kpg = 0.8 was chosen to
display maximum variability of the steady-state outcomes.

doi:10.1371/journal.pone.0135861.g005
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relative to the mean (or coefficient of variation) v. Negative values of the parameters can cause
the ODE models to become non-integrable, and thus the parameter distributions are cut off so
that the parameter values are non-negative. (We also studied log-normal distributions for the
parameters, which ensure that q> 0, and found qualitatively similar results). We solve the
ODE models (1)-(6) for 104 sets of parameters for each of the 104 random initial conditions at
each v. The limits for the sampling of the initial conditions for each model are given in Table 3.
We then perform classification analyses on these trajectories to predict the steady-state
outcomes.

The prediction accuracy A is defined as the number of correct classifications of the steady-
state outcomes divided by the total number of classifications. The accuracy quantifies the qual-
ity of the prediction of all of the steady-state outcomes and is therefore a discriminating mea-
sure of the overall performance of the classifier. We also evaluated the performance of the
classifier separately for each of the predicted steady-state outcomes. For model (1), there are
three steady-state outcomes, and thus there are three possible true-positive rates (TPR), one for
each outcome. In addition, there are two false-negative rates (FNR) for each outcome. Com-
plete quantification of the performance can be obtained using the 3 × 3 confusion matrix of the
classifier. There are several combinations of entries of the confusion matrix that can be plotted
against each other. In the Results section, we plot the TPR versus the FNR values as well as the
accuracy to assess the performance of the classification analyses.

We employ logistic regression to obtain predictions for the steady-state outcomes. A logistic
regression algorithm, in its most basic form, is a method to classify data into two groups. Based

on input data xðiÞ ¼ ðxðiÞ1 ; xðiÞ2 ; . . . ; xðiÞN Þ, we attempt to predict the class label y(i) 2 {0, 1} (i.e.
steady-state outcome). In our case, the input data are the model variables at a specified time tc,
where N is the number of variables in the model. To train the classifier, we employ labeled
training data (x(i), y(i)). The logistic regression algorithm then fits a logistic function

PyðxðiÞÞ ¼
1

1þ ey0þy1 xi
1
þy2 xi

2
þ���þyN xi

N

ð19Þ

to the training data. The parameters θj, where j = 0, 1, 2, . . ., N, are determined by minimizing
the cost function

Jðy0; y1; . . . ; yNÞ ¼ � 1

m

Xm
i¼1

yðiÞlogðPyðxðiÞÞÞ þ ð1� yðiÞÞlogð1� PyðxðiÞÞÞ
" #

; ð20Þ

wherem is the number of training samples. Evaluating Pθ(x
(k)) on an unseen data point x(k)

gives the probability that y(k) = 1. If Pθ(x
(k)) is greater than some threshold 0< c< 1, we predict

the label to be y(k) = 1, otherwise y(k) = 0. A typical value for the threshold is c = 1/2, but it can

Table 3. Summary of the initial condition ranges used in the ODEmodels. The ranges of the initial condi-
tions for each of the variables in ODEmodels (1)-(6).

Model Initial Condition Ranges

1 0 � P0 � 0.9, 0 � N0 � 0.33, D0 = 0, 0 � C0 � 0.5

2 0 � P0 � 0.1, 0 � N0 � 0.15, 0 � D0 � 0.1

3 0 � P0 � 0.2, 0 � N0 � 0.3

4 0 � N0 � 0.15, 0 � D0 � 0.1

5 0 � P0 � 0.7

6 0 � x0 � 2π

doi:10.1371/journal.pone.0135861.t003
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be tuned to increase either the precision or the recall of the classifier. The fitting process identi-
fies the parameters θj such that the classification error on the training set is minimal.

Models (1) and (2) possess three steady-state outcomes (aseptic death, septic death, and
health), therefore we must go beyond the binary classification scheme described above. To clas-
sify ODE models with three steady-state outcomes, we implement the one-versus-all classifica-

tion scheme. To do this, we consider three outcome labels, yðiÞh , y
ðiÞ
ad , and y

ðiÞ
sd , for a given set of

variables x(i). yðiÞh ¼ 0 if the patient outcome is not health (i.e. aseptic or septic death) and yðiÞh ¼
1 if the patient outcome is health. Similar definitions apply for yðiÞad and y

ðiÞ
sd (See Table 4). We

use these outcome labels and Eq 20 to determine three probability functions, Ph(x), Pad(x), and

Psd(x). Given an unlabeled set of variables xðkÞ ¼ ðxðkÞ1 ; xðkÞ2 ; . . . ; xðkÞN Þ, we calculate Ph(x(k)),
Pad(x

(k)), and Psd(x
(k)) and select the outcome with highest probability to be the predicted

outcome.

Results
For a deterministic system of ODEs, the basin of attraction for a given fixed point is defined as
the collection of initial conditions that evolve to that particular fixed point. For a given set of
parameters, each of the ODE models (1)-(6) possesses well-defined (non-overlapping) basins
of attraction for each fixed point.

However, different outcomes can be achieved even for a single initial condition if the param-
eters of the ODE model are varied. (See Fig 5). For example, the ratio of the parameters sc and
μc determines the background level of cortisol in model (1). Background cortisol levels are
known to vary from patient to patient and can vary from one organ system to another in a
given patient. To mimic these variations, we select sets of parameters randomly with mean val-
ues in Table 1 and standard deviations relative to their mean values (i.e. coefficient of variation)
given by v. (See Materials and Methods). With patient variation, an initial condition can pos-
sess multiple outcomes, and thus the basins of attraction for the fixed points overlap as shown
in Fig 1.

We seek to predict the patient steady-state outcomes in models (1)-(6) in the presence of
patient variability v. For the prediction method, we employ logistic regression with one-versus-
all classification [27]. (See Materials and Methods). We compare the prediction accuracy A at
patient variability v to the average best guess of the steady-state outcome. For the best guess
method, we determine the steady-state outcome for each of 102 sets of parameters for a given
initial condition. We define the best guess as the steady-state outcome with the highest number
of occurrences and record the frequency fi of the best guess for initial condition i. We then
average the frequency fi over 10

3 initial conditions for each v to obtain an estimate for the pre-
diction accuracy in systems with basin overlap.

For the prediction method, we solve a given system of ODEs for Ni = 104 random initial
conditions, each with randomly selected parameter sets with coefficient of variation v. We
choose Nt = 800 of the Ni trajectories randomly to train the classifier and predict the outcome
of the remaining 9200 trajectories. The classifier maps the state of the system at a given time tc

Table 4. One-versus-all classification of outcomes. The three one-versus-all classifications for ODEmod-
els with three steady-state outcomes.

Class 1 (y = 0) Class 2 (y = 1)

septic death + health aseptic death

health + aseptic death septic death

aseptic death + septic death health

doi:10.1371/journal.pone.0135861.t004
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to a particular steady-state outcome. The prediction accuracy is then averaged over 10 training
and prediction runs, each with Nt = 800 randomly selected training trajectories.

In Fig 6, we compare the accuracy A of the logistic regression prediction method (with clas-
sification at time tc = 0) to the average best-guess frequency as a function of the patient variabil-
ity v for models (1)-(5). For all model ODEs, the prediction accuracy for the logistic regression
prediction method is near 100% at v = 0, decreases for increasing patient variability, and
reaches a plateau near 1/nf in the large v limit, where nf is the number of stable fixed points in
the model (except for model (3)). For model (3) with two steady-state outcomes, the prediction
accuracy is non-monotonic and increases for v> 0.3 because this ODE model begins to sample
parameter regimes where one steady-state outcome is much more probable than the other. In
addition, for all models the average best-guess frequency provides an upper bound for the accu-
racy of the prediction algorithm. Hence, the overlap of the basins of attraction imposes a limit
on the prediction accuracy. To test the generality of these results, we also studied a generalized
one-dimensional ODE (model (6)) with varied fixed point structure compared to that for
model (5). (See Fig 3). As shown in Fig 6(c), the results for model (6) are qualitatively similar
to those for models (1)-(5).

To obtain more detailed information about the performance of the classifier, we also studied
the true positive rates (TPR) and false negative rates (FNR) for each steady-state outcome
(health, aseptic death, and septic death) for model (1) (Fig 7). We find that high true positive

Fig 6. Prediction accuracy of the steady-state outcome as a function of patient variation. The
prediction accuracy A using a logistic regression classifier at time tc = 0 (symbols) and the average best
guess over 103 initial conditions (dashed curves) versus patient variation v for (a) models (1) and (2), (b)
models (3) and (4), and (c) models (5) and (6).

doi:10.1371/journal.pone.0135861.g006

Fig 7. True positive rates versus false negative rates as a function of the prediction accuracy for
model (1). True positive rates (TPR) for each outcome, (a) health, (b) aseptic death, and (c) septic death,
versus the false negative rates (FNR) for model (1). For the FNR in (a), squares (circles) indicate that the
outcome was health, but the prediction was aseptic death (septic death). For the FNR in (b), squares (circles)
indicate that the outcome was aseptic death, but the prediction was health (septic death). For the FNR in (c),
squares (circles) indicate that the outcome was septic death, but the prediction was health (aseptic death).
The intensity of the shading of each symbol represents the prediction accuracy and scales linearly from
A = 1.0 (black) to 0.33 (white), which is obtained from random guessing.

doi:10.1371/journal.pone.0135861.g007
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rates are strongly correlated with high prediction accuracy A. As the accuracy decreases, the
TPR decreases and FNR increases. Fig 7(b) also shows that one reason for low prediction accu-
racy at high patient variability is the difficulty of the classifier to identify aseptic death states as
evidenced by the low TPR values.

We further investigated the influence of a different parameter sampling method on the pre-
diction accuracy. Fig 8 compares the sampling of parameters of model (1) in Fig 6 to the sam-
pling with a log-normal distribution instead of with a truncated normal distribution. Fig 8(a)
shows the prediction accuracy versus patient variability data of model (1) in Fig 6 for sampling
with truncated normal and log-normal distributions. In all cases the means and the standard
deviations of the two distributions are the same. For small v, the distributions are very similar
and hence the prediction accuracies are very similar. For increasing v the distributions differ
more (panels (b)—(d)). Therefore the sampling of states differs, and with it there is a larger dis-
crepancy in the prediction accuracy.

In Fig 6, we showed results for the logistic regression prediction method with classification
at tc = 0. In Fig 9, we show the prediction accuracy for models (1)-(6) with patient variability
v = 0.05 as a function of the classification time tc. For all models, the prediction accuracy grows

Fig 8. Comparison of the prediction accuracy for patient parameter variability sampled from normal
and log-normal distributions. (a) Prediction accuracy A versus parameter coefficient of variation v for
model (1) and classification time tc = 0 with parameters sampled from a truncated Gaussian (red triangles)
and log-normal (green squares) distributions. Sample Gaussian (dashed red) and log-normal (solid green)
parameter probability distributions P(q) with mean μ and coefficient of variation (b) v = 0.05, (c) 0.2, and (d)
0.5. For small v, the Gaussian and log-normal distributions overlap. For v� 0.5, the two distributions begin to
differ near q = 0 and q� μ.

doi:10.1371/journal.pone.0135861.g008

Fig 9. Prediction accuracy of the steady-state outcome as a function of the classification time. The prediction accuracy A using a logistic regression
classifier at time tc (symbols) for (a) models (1) and (2), (b) models (3) and (4), and (c) models (5) and (6) for patient variation v = 0.05.

doi:10.1371/journal.pone.0135861.g009
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with increasing tc, reaching nearly 100% beyond a characteristic time t� that depends on the
model. The prediction accuracy improves at later classification times because the system trajec-
tories have moved closer to the fixed points and hence the basins of attraction are more easily
separated as shown in Fig 1 for model (1).

We also investigated the variation of the prediction accuracy in the presence of measure-
ment noise. We took the trajectories generated for Fig 6 and added Gaussian random noise to
the model variables with variance s at each time point. We then performed training and testing
on the noisy data with classification at time tc = 0. In Fig 10, we show for model (6) that the pre-
diction accuracy decreases with increasing s. We find similar results for models (1)-(5). These
results emphasize that even if the measurement noise could be reduced to zero, the patient vari-
ation imposes an intrinsic limitation to outcome prediction.

Discussion
In clinical settings it is of great importance to determine patient outcomes as quickly as possible
with maximum accuracy. In this manuscript, we studied the effects of patient variability on the
ability to predict steady-state outcomes in systems of ODEs that model the immune response
to infection. For deterministic systems of ODEs with a given fixed set of parameters, each initial
condition can be mapped to a given steady-state outcome (or fixed point) and the collection of
initial conditions that map to a given steady-state outcome is defined as the basin of attraction
of that outcome. Each virtual patient can be defined by a given set of parameters in the model
ODE and patient variability can be introduced by varying the model parameters.

We showed that the introduction of patient variation leads to overlaps of the basins of
attraction for the steady-state outcomes. In particular, a given initial condition can map to mul-
tiple steady-state outcomes for different virtual patients (i.e. v> 0), which is similar to the case
of patients showing different responses to infection in clinical settings. We find that the predic-
tion accuracy of the outcomes decreases strongly with increasing patient variability. Our results
emphasize that even when the complete state of the system is known (i.e. all patient variables

Fig 10. Prediction accuracy as a function of patient variation for different noise strengths. The prediction accuracy A using a logistic regression
classifier at time tc = 0 for model (6) in the presence of measurement noise with strength s = 0 (circles), 0.05 (squares), 0.10 (diamonds), 0.20 (triangles), and
0.50 (triangles).

doi:10.1371/journal.pone.0135861.g010
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are measured precisely as a function of time), we have limited knowledge of the patient out-
come when there is patient-to-patient variability that gives rise to basin overlap.

Our results also show that for all of the model ODEs studied the prediction accuracy
increases as the time tc used for classification increases. As tc increases, the systems move closer
to their steady-state outcomes and the basins of attraction separate, which increases the predic-
tion accuracy. Again, this result is consistent with clinical experience. If a clinician waits to see
if the condition of the patient improves or worsens, the prognosis will become more accurate.
In our work, we explicitly show that patient-to-patient fluctuations cause a competition
between early and accurate outcome prediction.

In this work, we focused on discrete steady-state outcomes (i.e. health or death of the
patient) of the immune response to infection. However, in many biomedical scenarios, the out-
comes involve continuous variables rather than discrete states. In future work, we will apply
similar techniques to understand the effects of patient variability on the predictions of continu-
ous model variables, for example, the immune response and vaccination efficacy for influenza
[28].

Another important future direction is to combine outcome prediction with a treatment regi-
men. Treatments will depend on the predicted outcome, e.g. treatment for septic death would
involve an antibiotic, while treatment for aseptic death would incorporate an immune suppres-
sor. The predicted outcome can be updated based on the response of the patient to the treat-
ment, and a new treatment can be identified based on the new prediction.
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