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We develop a theoretical description for mechanically stable frictional packings in terms of the
difference between the total number of contacts required for isostatic packings of frictionless disks and
the number of contacts in frictional packings, m ¼ N0

c − Nc. The saddle order m represents the number of
unconstrained degrees of freedom that a static packing would possess if friction were removed. Using a
novel numerical method that allows us to enumerate disk packings for eachm, we show that the probability
to obtain a packing with saddle orderm at a given static friction coefficient μ, PmðμÞ, can be expressed as a
power series in μ. Using this form for PmðμÞ, we quantitatively describe the dependence of the average
contact number on the friction coefficient for static disk packings obtained from direct simulations of the
Cundall-Strack model for all μ and N.
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Granular media are fascinating, complex materials that
display gas-, liquid-, and solidlike behavior depending on
the boundary and driving conditions. Frictional forces are
crucial for determining the structural and mechanical
properties of granular media in the solidlike state [1].
For example, friction plays an important role in setting the
angle of repose [2], determining the width of shear bands in
response to applied stress [3,4], and enabling arches to form
and jam hopper flows [5].
For packings of frictionless spherical particles, it is well

known that the minimum contact number required for
mechanical stability [6] is hzi0min ¼ 2N0

c=N, where N0
c ¼

dN − dþ 1 is number of contacts among N particles in the
force-bearing backbone of the system (with periodic boun-
dary conditions) andd is the spatial dimension.However, at a
nonzero static friction coefficient μ, fewer contacts are
required for mechanical stability with Nc ≥ Nðdþ 1Þ=2 −
1þ 1=d and hzi∞min ¼ dþ 1 in the large-N and -μ limits.
Several computational studies have measured the contact

number as a function of μ for packings of frictional disks
and spheres using “fast” compression algorithms that
generate amorphous configurations [7–9]. In particular,
these studies find hzi ¼ hzi0min ¼ 4 and hzi∞min ¼ 3 in the
μ → 0 and ∞ limits, respectively, for bidisperse disks
[10,11]. For intermediate values of μ, hzi smoothly varies
between hzi0min and hzi∞min. However, it is not currently
known what determines the contact number distribution for
each μ and form of hzðμÞi for a given packing preparation
protocol. The ability to predict the functional form of the
contact number with μ is important because hzi controls the
mechanical [12] and vibrational [13] properties of granular
packings.

In this Letter, we develop a theoretical description for
packings of frictional disks at jamming onset in terms of
their “saddle order,” or the number of contacts that are
missing relative to the isostatic value in the zero-friction
limit, m ¼ N0

c − Nc. In contrast, previous studies used
μ → ∞ packings as the reference [14]. Using a novel
numerical procedure (the “spring network” method) that
allows us to enumerate packings for each m and molecular
dynamics (MD) simulations of the Cundall-Strack model
[15] for frictional disks, we show that m characterizes the
dimension of configuration space that the packings occupy.
Frictional packings with one missing contact (m ¼ 1) form
one-dimensional lines in configuration space, packings
with m ¼ 2 populate two-dimensional areas in configura-
tion space, and packings with larger m form correspond-
ingly higher-dimensional structures in configuration
space. We assume that the probability for obtaining a
packing with saddle order m at a given μ, PmðμÞ, is
proportional to the volume VmðμÞ occupied by force-
and torque-balanced mth order saddle packings in con-
figuration space. We find that PmðμÞ can be written as a
power series in μ, PmðμÞ ∼ amμm=ð1þ

Pmmax
m¼1 amμ

mÞ,
where am are the normalized coefficients of the power
series and mmax is the maximum number of contacts that
can be removed in the μ → ∞ limit. Using this form, we
quantitatively describe the dependence of the average
contact number on the friction coefficient for disk packings
obtained from MD simulations of the Cundall-Strack
model over a wide range of μ and in the large system limit.
We generated packings of bidisperse (50∶50 mixtures of

particles with equal mass and diameter ratio σ1=σ2 ¼ 1.4)
frictional disks in square cells with periodic boundary
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conditions using two methods. First, we implemented a
packing-generation algorithm in which the system is
isotropically compressed or decompressed (followed by
energy minimization) to jamming onset [6] at a packing
fraction ϕm

J that depends on the saddle order. Pairs of
overlapping disks i and j interact via repulsive linear spring
forces ~Fn

ij in the direction of the center-to-center separation
vector ~rij. We implemented the Cundall-Strack model for
the frictional interactions. When disks i and j come into
contact, a tangential spring is initiated with a force ~Ft

ij that
is proportional to the tangential (perpendicular to r̂ij)
displacement utij between disks. utij is truncated so that

the Coulomb threshold, j~Ft
ijj ≤ μj~Fn

ijj, is always satisfied.
When the disk pairs come out of contact, we set utij to zero.
The packings are distinguished in configuration

space by plotting the second invariant q2 ¼ ½tr2ðDÞ −
trðD2Þ�=2 of the N × N distance matrix, Dij ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi − xjÞ2 þ ðyi − yjÞ2

q
, versus ϕm

J (Fig. 1), where xi
and yi are the x and y coordinates of particles i and j. (Note
that q2 is invariant to uniform translations and rotations,
as well as particle-label permutations, of the system.)
We also developed a novel numerical technique (spring

network method) to enumerate packings at each m. The
method is best explained using an example. In Fig. 2(a), we
show an m ¼ 0 packing of N ¼ 6 frictionless disks with
Nc ¼ N0

c ¼ 11 contacts, which occurs in the lower right
corner of the q2-ϕm

J plane in Fig. 1(a). To generate m ¼ 1
packings with ten contacts, we break one of the 11 contacts
in this packing [e.g., the contact between disks 1 and 2 in
Fig. 2(a)] and constrain its separation to be r12=σ12¼ λ>1,
while the other contacts are constrained to be rij ¼ σij.
With these constraints and as a function of λ, we implement
the successive compression and decompression packing-
generation algorithm [6] to find packings at jamming onset,
ϕ1
J. This procedure is repeated for each of the ten other

contacts in the packing in Fig. 2(a) to yield the N0
c ¼ 11,

m ¼ 1 branches in Fig. 1(b), and then for each of them ¼ 0
packings. As shown in Fig. 1(b), we find overlap between
the m ¼ 1 branches from the spring network method and
m ¼ 1 packings generated from simulations of the Cundall-
Strack model. m ¼ 2 and higher-order saddle packings are
obtained using a similar procedure, except multiple con-
tacts are broken, as shown in Fig. 1(c). Thus, a collection
of related packings withNbðN;mÞ branches originates with
each m ¼ 0 packing.
The plot of q2 versus ϕm

J in Fig. 1(a) for packings with
m ¼ 0 and 1 illustrates several important features. First, in
the μ → 0 limit, m ¼ 0 packings occur as distinct points
in configuration space (or q2 versus ϕm

J ) [6]. Second, as μ
increases, m ¼ 1 packings form one-dimensional lines in
configuration space that emanate from m ¼ 0 packings.
The m ¼ 1 packings that are stabilized at low μ are
displaced in configuration space from the m ¼ 0 packings

[Fig. 1(b)]. In contrast, the packings that occur at large μ
approach the m ¼ 0 packings in configuration space.
Thus, we find that the lengths of the m ¼ 1 lines increase
with μ. m ¼ 2 [Fig. 1(c)] and higher-order saddle packings
populate areas and higher-order volumes in configuration
space.
To determine the probability PmðμÞ that a packing occurs

with maximum friction coefficient μ and saddle index m,
we assume that the partition function ZmðμÞ is proportional
to the configuration space volume, which contains solu-
tions to the force and torque balance equations on each
particle with tangential and normal forces that satisfy the
Coulomb criterion and Fn

ij ≥ 0. We calculate probabilities
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FIG. 1 (color online). (a) Second invariant q2 of the distance
matrix versus packing fraction at jamming onset ϕm

J for packings
of bidisperse disks with N ¼ 6 generated using the Cundall-
Strack model for friction with μ ¼ 0 (filled circles), 0.002
(triangles), 0.02 (squares), and 0.2 (exes). Only packings with
m ¼ 0 and 1 are shown. (b) Close-up of boxed region in (a) with
m ¼ 1 packings (solid blue lines) generated using the spring
network method that originate from the circled m ¼ 0 packing.
(c) m ¼ 2 packings (gray mesh) that are generated from the two
highlighted m ¼ 1 families (solid blue lines) using the spring
network method. m ¼ 2 packings generated using the Cundall-
Strack method that possess the same contact network as those
from the spring network (gray mesh) are indicated by triangles.
The m ¼ 1 and 2 packings originate from the circled m ¼ 0
packing.
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for packings to possess m missing contacts using the Gibbs
assumption of equal probabilities.
In contrast, we have shown directly using MD simu-

lations that the probability of finding a particular packing
with m ¼ 0 from random initial conditions violates the
Gibbs equal-probability assumption [6]. The reason is that
the volume of configuration space that determines the
probability of a particular packing with m ¼ 0 is the
volume of the initial conditions that end up in that particular

m ¼ 0 packing (i.e., its basin of attraction [16]), not the
volume in configuration space that the packing itself
occupies. Packings with m ¼ 0 are represented by points
in configuration space with negligible volume.
It is the volume in configuration space of the saddle

packings that determines the fraction of packings with a
givenm. (See the Supplemental Material [17].) In this case,
the partition function

ZmðμÞ ∝ VmðμÞδ2N−1−m; ð1Þ

where VmðμÞ is the total volume in configuration space of
all packings in mechanical equilibrium at μ with saddle
index m. The length scale δ is the characteristic radius of
the geometrical structure formed from the Minkowski sum
of objects with dimensions 2N − 1 −m and m that sur-
rounds each packing in configuration space and represents
the uncertainty associated with finding the packings. We
further assume that VmðμÞ can be described using a
characteristic length scale lðμÞ, so that VmðμÞ ∼ ½lðμÞ�m.
Thus, ZmðμÞ has dimensions of length raised to the 2N − 1
power, which is the total dimension of configuration space.
If we scale ZmðμÞ by the m ¼ 0 value Z0ðμÞ, we obtain

ZmðμÞ
Z0ðμÞ

∝
�
lðμÞ
δ

�
m
: ð2Þ

Using this approach, we measure the volume of con-
figuration space in units of the volume in configuration
space of packings with m ¼ 0. To directly measure
ZmðμÞ=Z0ðμÞ, we first employ the spring network method
to generate a grid of points for each branch of saddle
packings of order m. At each grid point characterized
by ðx1; y1;…; xm; ymÞ, we determine the minimum friction
coefficient μminðx1; y1;…; xm; ymÞ required to achieve
mechanical equilibrium for that configuration, using
Monte Carlo moves to search the null space of the force-
and torque-balance matrix [20,21]. The allowed configu-
ration volume is determined by integrating over the μmin
contour [Fig. 2(c)], such that μ ≤ μminðx1; y1;…; xm; ymÞ
for a given mth order branch of saddle packings. The total
allowed volume in configuration space for a givenm and μ,
VmðμÞ, is obtained by summing the volumes over all mth
order branches.
We show in Fig. 3 that ½VmðμÞ�1=m scales linearly with μ

form ¼ 1 and 2. This scaling matches our intuition because
the total volume of the force-torque null space is con-
strained by the Coulomb criterion for each contact (or
dimension). As μ increases, the region of possible solutions
increases linearly with μ in each dimension from zero at
μ ¼ 0 to the total volume of the null space as μ → ∞. As
VmðμÞ approaches the total volume of the null space, the
scaling Vm ∼ μm will break down since the total volume of
the null space is finite [22]. However, this does not occur
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FIG. 2 (color online). (a) m ¼ 0 packing of N ¼ 6 bidisperse
frictionless disks with Nc ¼ N0

c ¼ 11 contacts. To enumerate
packings withm ¼ 1, the contact between disks 1 and 2 is broken
and constrained to have separation (b) r12=σ12 ¼ λ > 1, while the
other ten contacts are maintained (visualized as springs) at
rij ¼ σij. Our packing-generation process [6] is performed with
these constraints to create an m ¼ 1 packing at ϕ1

J with only ten
contacts. This process is repeated as a function of λ and for
the other ten contacting particle pairs. (c) Contour plot of the
minimum friction coefficient μmin required to achieve force and
torque balance for a branch of m ¼ 2 packings in configuration
space spanned by the central position of the spring (x1, y1)
constraining the first broken contact and x component of the
spring constraining the second broken contact x2. The m ¼ 2
branch of packings emanates from the circled m ¼ 0 packing.
The color scale for log μmin increases from dark to light.
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for the range of friction coefficients we considered
(μ < 10).
The normalized probability for an mth order saddle is

PmðμÞ ¼
ZmðμÞPmmax
m¼0 ZmðμÞ

¼ Amμ
mPmmax

m¼0 Amμ
m ¼ amμm

1þPmmax
m¼1 amμ

m ; ð3Þ

where am ¼ Am=A0 and the highest order saddle is
mmax ¼ ðN − 1Þ=2 in 2D [23]. Assuming that the saddle
packings at a given m occupy similar volumes in
configuration space, a reasonable approximation for the
coefficients is Am ¼ cmðNÞNsðNÞNbðN;mÞ, where NsðNÞ
is the number of m ¼ 0 packings for a given N and
the normalized coefficients am ¼ cmðNÞNbðN;mÞ, where
NbðN;mÞ ¼ CN0

c
m . We show in Fig. 4(a) that Eq. (3) with

cmðNÞ ¼ 1 yields qualitatively correct results for the
measured probabilities to obtain a given mth order packing
from MD simulations of the Cundall-Strack model for
N ¼ 30 [Fig. 4(b)]. For example, m ¼ 0 packings are most
highly probable for small μ < 10−2, and the highest order
saddles are most probable for μ > 1. However, as shown in
Fig. 4(b), we obtain a much better fit to the data from the
Cundall-Strack model using

cmðNÞ ¼ exp½−mðm −mmaxÞ=mmax�; ð4Þ

which indicates an excess of mth order saddles for m near
mmax=2 that likely originates from rattler particles that exit
or join the force-bearing network during compression. (See
the Supplemental Material [17].)
We calculate the average contact number from

hzi ¼ 2ðN0
c − hmiÞ=N. Our strategy is to use results for

small systems (i.e., N ¼ 30) to predict PmðμÞ and hzi

versus μ for large N. We show in Fig. 4(c) that predictions
from Eqs. (3) and (4) agree quantitatively with hzðμÞi for
N ¼ 64 and 128 from the Cundall-Strack model. Thus,
we have developed a method to calculate hzðμÞi for
large systems by enumerating frictional families in small
systems.
This work provides a framework for addressing several

important open questions related to frictional packings. For
example, why does the crossover from the low- to high-
friction limits in the average contact number and packing
fraction occur near μ ≈ 10−2 for disks [10,11] compared
to 10−1 for spheres [8,10] for fast compression algorithms.
In addition, using the methods described above, we can
determine how the crossover from low- to high-friction
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FIG. 3 (color online). mth root of the volume VmðμÞ in
configuration space of the collection of mth order saddle
packings (m ¼ 1, squares; m ¼ 2, circles) that are stabilized
by a friction coefficient ≤ μ. The dashed lines have slope 1.
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FIG. 4 (color online). (a) Probability PmðμÞ for a packing with
m ¼ 0, 1;…; 14 (moving from left to right and dark to light)
versus friction coefficient μ predicted by Eq. (3) with cmðNÞ ¼ 1
and N ¼ 30. Each m has a different line type. (b) PmðμÞ for even
m:m ¼ 0 (pluses), 2 (open circles), 4 (asterisks), 6 (filled circles),
8 (exes), 10 (squares), 12 (diamonds), and 14 (triangles) from
the Cundall-Strack model for N ¼ 30 and fits to Eq. (3) (solids
lines) with cmðNÞ from Eq. (4). The dotted lines are guides to the
eye for the symbols. (c) hzðμÞi for the Cundall-Strack model for
N ¼ 30 (squares), 64 (diamonds), and 128 (triangles) and fits to
Eq. (3) (lines).
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behavior depends on the compression rate and degree of
thermalization in the packing-generation protocol. Such
calculations are crucial for developing the ability to
design granular assemblies with prescribed structural and
mechanical properties.
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