Prof. Mark D Shattuck Physics 39907 Computational Physics October 17, 2024

Problem Set 5

Question 1. 2×2 *Matrices:* Find explicit examples of 2×2 matrices with the following properties.

- (1) $A^2 = -I$ for *A* with all real entries.
- (2) $P^2 = I$ for $P \neq I$.
- (3) $LU = UL$ for *U* upper- and *L* lower-triangular.
- (4) $LU \neq UL$ for *U* upper- and *L* lower-triangular.
- (5) *BC* = $-CB$ for *BC* \neq 0.
- (6) $D^2 = 0$ with all elements of *D* are non-zero.

Question 2. *LDU factorization:* Find the values of *w, x, y, z* such that:

$$
A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = LDU = \begin{bmatrix} 1 & 0 \\ w & 1 \end{bmatrix} \begin{bmatrix} x & 0 \\ 0 & y \end{bmatrix} \begin{bmatrix} 1 & z \\ 0 & 1 \end{bmatrix}
$$

- (1) Can all matrices *A* be decomposed this way? What are the conditions on *a, b, c, d* for this decomposition to work (or not work)?
- (2) Assuming the decomposition exists, what are the conditions on w, x, y, z for A^{-1} to exist?
- (3) Show that:

$$
A^{-1} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.
$$

- (4) What is the condition on *A* for the inverse to exist? How does it compare with the conditions on w, x, y, z above?
- (5) MATLAB has a function $[L, U] = L(Q)$ that returns the LU decomposition. Make a new MATLAB function that returns the $A = LDU$ decomposition: $[L, D, U] = \text{Id}u(A)$. Here is a start:

```
1 function [L, D, U] = Idu(A)2 % ldu <LDU decomposition of a matrix.>
3 % Usage:: [L,D,U]=ldu(A)
4 %
5
6 % revision history:
7 % 10/26/2023 Mark D. Shattuck <mds> ldu.m
8
9 %% Main
10 [L, U] = lu(A);11 D=???
12 U=???
```
(6) Not all matrices A can be decomposed into $A = LDU$, where L is lower triangular. However, there is always a permutation of *A* which can be factored. So there is a always a permutation matrix *P*, a lower-triangular matrix L and an upper-triangular matrix U such that $PA = LU$. Further there is a unique factorization if the all of the diagonals of *L* are 1. Notice that $P^2 = I$ and so $A = PLU$.

2

So the MATLAB command $[L, U]=lu(A)$ actually returns L=PL. Show that:

 $\begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix}$

does not have an *LU* decomposition and find its *P LU* decomposition and its *P LDU* decomposition.

Question 3. Linear Equations: Find the linear combination of these 3 vectors:

$$
u_1 = \begin{bmatrix} 4 \\ 1 \\ 3 \end{bmatrix}, u_2 = \begin{bmatrix} 2 \\ -4 \\ 9 \end{bmatrix}, u_3 = \begin{bmatrix} -1 \\ -2 \\ 3 \end{bmatrix}
$$

which gives

$$
b = \begin{bmatrix} -2 \\ 2 \\ 9 \end{bmatrix}.
$$

Question 4. Energy in a spring system: Consider a 3 mass 4 spring system with fixed-fixed boundaries separated by 1:

$$
f_1 \downarrow \quad \begin{array}{c}\n\overline{\xi_{c_1}} \\
\overline{\xi_{c_2}} \\
\overline{\xi_{c_2}} \\
\overline{\xi_{c_3}} \\
\overline{\xi_{c_4}} \\
\overline{\xi_{c_3}} \\
\overline{\xi_{c_4}} \\
\overline{\xi_{c_4}} \\
\overline{\xi_{c_5}} \\
\overline{\xi_{c_6}} \\
\overline{\xi_{c_7}} \\
\overline{\xi_{c_8}} \\
\overline{\xi_{c_4}} \\
\overline{\xi_{c_5}} \\
\overline{\xi_{c_6}} \\
\overline{\xi_{c_7}} \\
\overline{\xi_{c_8}} \\
\overline{\xi_{c_8}} \\
\overline{\xi_{c_9}} \\
\overline{\xi_{c_8}} \\
\overline{\xi_{c_9}} \\
\overline{\xi_{c_9}} \\
\overline{\xi_{c_9}} \\
\overline{\xi_{c_9}} \\
\overline{\xi_{c_0}} \\
\overline{\xi_{c_0}} \\
\overline{\xi_{c_1}} \\
\overline{\xi_{c_1}} \\
\overline{\xi_{c_2}} \\
\overline{\xi_{c_4}} \\
\overline{\xi_{c_5}} \\
\overline{\xi_{c_6}} \\
\overline{\xi_{c_7}} \\
\overline{\xi_{c_8}} \\
\overline{\xi_{c_9}} \\
\overline{\xi_{c_1}} \\
\overline{\xi_{c_1}} \\
\overline{\xi_{c_2}} \\
\overline{\xi_{c_4}} \\
\overline{\xi_{c_6}} \\
\overline{\xi_{c_7}} \\
\overline{\xi_{c_8}} \\
\overline{\xi_{c_9}} \\
\overline{\xi_{c_1}} \\
\overline{\xi_{c_1}} \\
\overline{\xi_{c_1}} \\
\overline{\xi_{c_2}} \\
\overline{\xi_{c_3}} \\
\overline{\xi_{c_4}} \\
\overline{\xi_{c_7}} \\
\overline{\xi_{c_8}} \\
\overline{\xi_{c_9}} \\
\overline{\xi_{c_1}} \\
\overline{\xi_{c_1}} \\
\overline{\xi_{c_2}} \\
\overline{\xi_{c_1}} \\
\overline{\xi_{c_1}} \\
\overline{\xi_{c_2}} \\
\overline{\xi_{c_3}} \\
\overline{\xi_{c_4}} \\
\overline{\xi_{c_7}} \\
\overline{\xi_{c_8}} \\
\overline{\xi_{c_9}} \\
\overline{\xi_{c_1}} \\
\overline{\xi_{c_1}} \\
\overline{\xi_{c_2}} \\
\overline{\xi_{c_1}} \\
\overline{\xi_{
$$

In class, we found the matrix representation of this system:

$$
e = \Delta u,
$$

\n
$$
T = Ce,
$$

\n
$$
f = \Delta^T T.
$$

- (1) What are the sizes of each matrix e, Δ, u, T, C, f ?
- (2) Assuming the applied forces are constant, write the total work done on the system for a displacement of

$$
u = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}
$$

directly in components and in matrix notation.

- (3) Find the change in potential energy of the springs for the same displacement *u* in both component form and matrix form.
- (4) Use the work-energy theorem to find the total potential energy of the system after a displacement *u* with forces *f*.
- (5) Show that the minimum potential energy corresponds to the force balance solution we derived in class.
- (6) Find and plot the displacements for the case that $c_m = 1 + m/2$, with masses $M_n = N n$, where $N = 4$, n=1:N-1, m=1:N for the case shown and the forces are from gravity i.e., $f_n = M_n g$ and $g = 1$. You can plot the displacements against *n*.
- (7) Find the solution for $N = 20$.