Prof. Mark D Shattuck Physics 39907 Computational Physics November 7, 2024

Problem Set 6

Question 1. *Eigen-decomposition:* Find the matrix *A* with eigenvalues $\lambda_1 = 5$, $\lambda_2 = 3$ and eigenvectors $y_1 = (1,0), y_2 = (1,1)$. Use MATLAB to find [S e]=eig(A) to show your answer is correct.

Question 2. *Markov Matrices:* A Markov matrix is a special matrix where each column sums to 1. This is a 2×2 example:

$$
A = \begin{bmatrix} \frac{8}{10} & \frac{3}{10} \\ \frac{2}{10} & \frac{7}{10} \end{bmatrix}.
$$

A Markov chain uses a Markov matrix to evolve a state at time n, u_n , to a state at $n+1$ according to this rule:

$$
u_{n+1} = Au_n.
$$

For example, $u = [N, S]^T$ might represent the number of people N who live in the north and S the number in the south. During 1 year 8*/*10 of the people living in the north, stay in the north, and 2*/*10 move to the south. 7*/*10 of those living in the south stay in the south, and 3*/*10 move to the north.

- (1) What does $u_0 =$ $\lceil 10$ 0 1 represent?
- (2) Show that the Markov chain rule is consistent with the moving habits described above, by finding u_1 for $u_0 =$ $\lceil 10 \rceil$ 0 1 and $u_0 =$ $\begin{bmatrix} 0 \\ 10 \end{bmatrix}$.
- (3) Show that $u_n = A^n u_0$.
- (4) Find the eigenvalues and eigenvectors of *A*.
- (5) Express the equation for u_n in terms of the eigen-decomposition $A = S\Lambda S^{-1}$.
- (6) Find u_1, u_2 , and u_3 given that $N = 1,000,000$ people live in the North at $n = 0$ and zero people live in the south $S = 0$.
- (7) Use the eigen-decomposition of *A* to find A^{100} and u_{100} how does it compare to the infinite time steady-state (fixed-point) A^{∞} and u_{∞} .
- (8) For *n* large how does the state u_n depend on the initial state u_0 ?

Question 3. *Eigen-system of* K : The *k*-th eigenvector y_k of K_N is:

$$
y_k = (\sin(k\pi h), \sin(2k\pi h), ..., \sin(Nk\pi h)),
$$

where $h = 1/(N + 1)$.

- (1) Find the first eigenvalue of K_N by direct multiplication of the first row of K_N by y_1 . (Useful Identity: $\sin 2x = 2 \sin x \cos x$.
- (2) Use MATLAB to find eig(K5), where $K5= K_5$. Show that it matches the general equation for the eigenvalues of K_N :

$$
\lambda_k = 2(1 - \cos k\pi h).
$$

e=eig(K) returns a column vector. It is useful to express $\lambda = (\lambda_1, ..., \lambda_N)$ as column vector lam in MATLAB as well. Then e−lam should be a column vector of zeros (possibly with round-off errors of order eps).

Question 4. *Linear-Constant-Coefficient-Finite-Difference-Ordinary-Differential-Equation-Solver (lccfdodes):* We discussed a number of integration schemes to solve the ordinary differential equation:

$$
\dot{u} \equiv \frac{du}{dt} = Au,
$$

where *u* is an $M \times 1$ vector and *A* is a an $M \times M$ constant matrix. Follow the steps below to write a MATLAB function that solves $\dot{u} = Au$ for initial condition u_0 with time-step dt and N steps.

(1) Here is a start:

```
1 function u=lccfdodes(A,u0,dt,N)
2 % lccfdodes <Linear−Constant−Coefficient−Finite−Difference−
3 % Ordinary−Differential−Equation−Solver (lccfdodes)>
4 % Usage:: u=lccfdodes(A,u0,dt,N)
5 %
6 % Solves du/dt=Au with u(0)=u0 t=(0:N-1)*dt; u(:,n) and u0 are column vectors
7
8 % revision history:
9 % 11/01/2023 Mark D. Shattuck <mds> lccfdodes.m
10
11 %% Main
12
13 M=???; % number of equations
14 u=???; % initialize u(t) to zeros, one Mx1 vector for each of N times
15 u(:,1)=???; % set initial condition
16
17 G=???; % define growth factor G
18
19 % loop over times 1 through N−1
20 for n=1:N−1
21 u(:, n+1) = ? ? ?; % update u_n+1 using G and u_n
22 end
```
(2) For the growth Factor, discretize the the time derivative to first order:

$$
\frac{du}{dt} \simeq \frac{u(t + \Delta) - u(t)}{\Delta} + \mathcal{O}(\Delta)
$$

$$
= \frac{u_{n+1} - u_n}{\Delta},
$$

where $u_n = u(n\Delta)$, and $t = n\Delta$. For the right-hand side start with the Forward Euler (FE) approximation:

$$
\frac{u_{n+1} - u_n}{\Delta} = Au_n.
$$

For G in the code solve this equation for u_{n+1} and find *G* such that: $u_{n+1} = Gu_n$. Fill in G=???; with the *G* you found, using dt for the scalar Δ . Note: For a matrix *B* and vector v , $(I+B)v = v + Bv$. (3) Test your code on the equations for a simple harmonic oscillator:

> $\dot{x} = v$ $\dot{v} = -x$

with initial condition $x = 1$ and $v = 0$. The following commands (script) should produce a $x \rightarrow v$ phase space plot like the one in figure [1,](#page-2-0) when you fill in the correct values for A and u0:

Figure 1. Phase-space trajectory for simple harmonic oscillator using forward Euler.

```
1 A=???; % fill in SHM matrix A from du/dt=Au;
2 u0=???; % fill in initial conditions
3
4 N=32; % Number of time points
5 dt=2*pi/(N−1); % Time step
6
7 u=lccfdodes(A,u0,dt,N); \frac{1}{6} solve the equation
8
9 %% Make a phase space x−v plot
10 h=plot(u(1,:),u(2,:),'.−');
11 set(h,'markersize',20); % increase marker size
12 axis('equal')
13 set(gca, 'fontsize', 15); % make font larger
14 xlabel('Position (x)');
15 ylabel('Velocity (v)');
```
(4) Add the exact solution to the plot.

(5) Find the G for Backward Euler (BE) using the approximation:

$$
\frac{u_{n+1} - u_n}{\Delta} = Au_{n+1},
$$

and solving for u_{n+1} such that: $u_{n+1} = Gu_n$. Note that u_{n+1} is on the right-hand-side this time. You may need to use inverses. However, in MATLAB use \langle instead of inv. Add the BE solution to the plot.

(6) (*Optional:*) It might be useful to add a new input to your lccfdodes code to allow you to change the integrator from FE to BE and others (see below). One easy way is to use the switch-case statement. Here is an example. Add a new input itype to the function:

```
1 function u=lccfdodes(A,u0,dt,N,itype)
2 % lccfdodes <Linear−Constant−Coefficient−Finite−Difference−
3 % Ordinary−Differential−Equation−Solver (lccfdodes)>
4 % Usage:: u = lccfdodes(A, u0, dt, N, itype{['FE'], 'BE', 'TP', 'LF']})
```
Then in place of $G=??$?; add the following:

```
1 % define growth factor G
2 switch itype
3 case 'FE'
4 G=???; % forward Euler
5 case 'BE'
6 G=???; % backward Euler
7 case 'TP'
8 G=???; % trapazoid method 2nd−order
9 case 'LF'
10 G=???; % leapfrog
11 end
```
The switch-case statement is a shorthand for cascading if..then..else..end statements. It executes only the code under the case if case cond==itype. You can read more in the documentation for switch. It is often useful to have a default choice for itype. To implement that add:

```
1 %% Parse Input
2 if("exist('itype','var') | isempty(itype))
3 itype='FE';
4 end
```
before you use itype. Then the function call $lccf$ dodes (A, u0, dt, N) is the same as the function call $lccf$ dodes (A, u 0 , dt, N, 'FE'). Note the way this is set up the case of itype matters. So 'FE'^{\sim}='fE'. You could use the command upper to modify this behavior.

(7) Find the G for the trapezoid method (TP) using the approximation:

$$
\frac{u_{n+1} - u_n}{\Delta} = A \frac{u_n + u_{n+1}}{2},
$$

and solving for u_{n+1} such that: $u_{n+1} = Gu_n$. Add this solution to the plot.

 (8) Find the G for the explicit modified Euler method (ME) . To see the pattern start with FE for SHM:

$$
\frac{x_{n+1} - x_n}{\Delta} = v_n,
$$

\n
$$
\frac{v_{n+1} - v_n}{\Delta} = -x_n.
$$

\n
$$
\frac{1}{\Delta} \left(\begin{bmatrix} x \\ v \end{bmatrix}_{n+1} - \begin{bmatrix} x \\ v \end{bmatrix}_n \right) = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} x \\ v \end{bmatrix}_n.
$$

\n
$$
\frac{u_{n+1} - u_n}{\Delta} = Au_n.
$$

\n
$$
u_{n+1} - u_n = A\Delta u_n.
$$

\n
$$
u_{n+1} = u_n + A\Delta u_n = (I + A\Delta)u_n = G_{FE}u_n.
$$

To make the modification replace $-x_n$ on the *rhs* of the second equation with $-x_{n+1}$. This is still explicit since x_{n+1} can be calculated from the first equation.

$$
\frac{x_{n+1} - x_n}{\Delta} = v_n,
$$

\n
$$
\frac{v_{n+1} - v_n}{\Delta} = -x_{n+1};
$$

\n
$$
x_{n+1} - x_n = v_n \Delta,
$$

\n
$$
v_{n+1} - v_n = -x_{n+1} \Delta.
$$

\n
$$
x_{n+1} = x_n + v_n \Delta,
$$

\n
$$
v_{n+1} = v_n - x_{n+1} \Delta.
$$

Collecting $n+1$ terms on the left:

$$
x_{n+1} = x_n + v_n \Delta
$$

$$
v_{n+1} + x_{n+1} \Delta = v_n.
$$

Converting to matrix form and solving:

$$
\begin{bmatrix} 1 & 0 \\ \Delta & 1 \end{bmatrix} \begin{bmatrix} x \\ v \end{bmatrix}_{n+1} = \begin{bmatrix} 1 & \Delta \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ v \end{bmatrix}_{n}.
$$

$$
\begin{bmatrix} 1 & 0 \\ \Delta & 1 \end{bmatrix} u_{n+1} = \begin{bmatrix} 1 & \Delta \\ 0 & 1 \end{bmatrix} u_{n}.
$$

$$
u_{n+1} = \begin{bmatrix} 1 & 0 \\ \Delta & 1 \end{bmatrix} \begin{bmatrix} 1 & \Delta \\ 0 & 1 \end{bmatrix} u_{n}.
$$

$$
u_{n+1} = \begin{bmatrix} 1 & 0 \\ -\Delta & 1 \end{bmatrix} \begin{bmatrix} 1 & \Delta \\ 0 & 1 \end{bmatrix} u_{n}.
$$

$$
u_{n+1} = \begin{bmatrix} 1 & \Delta \\ -\Delta & 1 - \Delta^2 \end{bmatrix} u_{n}.
$$

$$
G = \begin{bmatrix} 1 & \Delta \\ -\Delta & 1 - \Delta^2 \end{bmatrix}.
$$

To see the general pattern notice that *A* can be broken up into a strictly lower triangular part *L* and an upper triangular part $U = A - L$ such that $A = L + U = L + A - L = A$. To find L in MATLAB use the function tril(A,−1). tril(A,k) returns a lower-triangular matrix from *A* starting at the *k*-th diagonal. $k = 0$ is the main diagonal, $k > 0$ is above the diagonal, and $k < 0$ is below the main diagonal. Using this decomposition and returning to the generic forward Euler and replacing *A*:

$$
u_{n+1} = (I + A\Delta)u_n = (I + (L + U)\Delta)u_n
$$

= $L\Delta u_n + (I + U\Delta)u_n$.

Now all of the terms $L\Delta u_n$ can be replaced by previously calculated terms $L\Delta u_{n+1}$ since *L* has only non-zero terms below the main diagonal:

$$
u_{n+1} = L\Delta u_{n+1} + (I + U\Delta)u_n.
$$

$$
u_{n+1} - L\Delta u_{n+1} = (I + U\Delta)u_n.
$$

$$
(I - L\Delta)u_{n+1} = (I + U\Delta)u_n.
$$

$$
u_{n+1} = (I - L\Delta)^{-1}(I + U\Delta)u_n.
$$

Implement this formula and add to your plot. You should see an ellipse instead of a circle. Notice that we could have defined $L = \text{tril}(L, 0)$ and then $U = A - L$ would be strictly upper-triangular. Then we could replace Uu_n with Uu_{n+1} . In fact there are many ways to chose the order of evaluation since any permutation of *A* does not change the equations. So there are *N*! ways, where *N* is the rank of *A*. For the 2×2 we have been using there are 2 ways. One gives an ellipse tipping left and the other to the right.

(9) (*Optional:*) Here is the last scheme that we discussed LF:

Leapfrog:

$$
\frac{u_{n+1} - u_{n-1}}{2\Delta} = Au_n.
$$

(10) Include all of your code and a single plot of the exact solution with the all 4 schemes FE, BE, TP, and ME (and LF if you did it) on one plot.

Question 5. *Magnetic Dipole in a Magnetic Field:* The equations for a magnetic moment vector $m =$ (m_x, m_y, m_z) in a magnetic field $B = (0, 0, 1)$ is a good test problem for the code lccfdodes from the previous problem. The moment experiences a torque in the magnetic field and evolves according to the Bloch equations:

$$
\frac{dm}{dt} = m \times B - Rm + M_0,
$$

\n
$$
R = \begin{bmatrix} \frac{1}{T_2} & 0 & 0 \\ 0 & \frac{1}{T_2} & 0 \\ 0 & 0 & \frac{1}{T_1} \end{bmatrix},
$$

\n
$$
M_0 = \left(0, 0, \frac{1}{T_1}\right).
$$

R is a relaxation matrix of positive relaxations times T_1 and T_2 with $T_1 \geq T_2$. $m \times B$ is the cross product.

(1) Rewrite the equation for *m* in this matrix form:

$$
\frac{dm}{dt} = Am + b,
$$

and find A and b in terms of T_1 and T_2 .

(2) The current function lccfdodes($A, u0, dt, N$) does not allow for the constant term *b*. To handle this case define *u* such that $m = u - A^{-1}b$, and show that:

$$
\frac{du}{dt} = Au.
$$

(3) If the initial condition $m(0) = m_0$, what is the initial condition for *u*?

FIGURE 2. Solution to the Bloch equations.

- (4) How can you recover the real solution *m* from the solution *u* that comes from: u=lccfdodes $(A, u0, dt, N);$? What MATLAB command will you use to account for the fact that u is a list of vectors at each of N time points?
- (5) Solve this system with initial conditions $m0=[1;0;0]$, T1=10, T1=8, for a total time of T=100, with $dt = .1$, to produce plot like figure [2,](#page-6-0) using plot3($m(1, :), m(2, :), m(3, :)$).
- (6) Comment on the effect of changing T_1 and T_2 .
- (7) Comment on the effect of changing integration schemes? Chose one to make a plot to turn in.

Question 6. *Linear Predator-Prey Model:* The population of rabbits *r* grows at a rate of 6*r* from births, but decreases at a rate of −2*f* due to predation from the population of foxes *f*. The fox population grows at a rate $2r + f$ due to increase of food and birth. This leads to the following equations:

$$
\frac{dr}{dt} \equiv \dot{r} = 6r - 2f
$$

$$
\dot{f} = 2r + f.
$$

- (1) Define $u = (r, f)$ and convert these equations to matrix form $\dot{u} = Au$.
- (2) What is A?
- (3) What are the eigen-values Λ and eigen-vectors *S* of A?
- (4) Check your answer using MATLAB: $[s, e] = eig(\text{sym}(A))$. $e \equiv \Lambda$.
- (5) Rewrite the equation using the eigen-decomposition of *A*.
- (6) Substitute $y = S^{-1}u$ into the equation, and show it reduces to $\dot{y} = \Lambda y$, using the fact that differentiation and matrix multiplication are linear so that $B\dot{u} = (B\dot{u})$, for any constant matrix *B*.
- (7) Using $y = (y_1, y_2)$, rewrite $\dot{y} = \Lambda y$ as two equations and solve for y_1 and y_2 with initial conditions y_1^0 and y_2^0 . The first equations should be $\dot{y}_1 = \lambda_1 y_1$.
- (8) Solve this model for analytically *u* given $u_0 = u(0)$.
- (9) Show the solution is equivalent to $u = Se^{\Lambda t}S^{-1}u_0$. Note: this *e* is Euler's constant not the eigenvalue matrix.

(10) In MATLAB there are 2 different functions to find the exponential of matrix. exp(e) is the element-wise exponentiation, where each element of the matrix is exponentiated. expm is the matrix exponentiation. It uses the Taylor expansion:

$$
\exp(\mathbf{A}) \equiv \exp A = I + A + \frac{1}{2}A^2 + \dots + \frac{1}{N!}A^N.
$$

For the solutions to differential equation we need the matrix version. If *A* is diagonal then the Taylor expansion is simplified since diag(v) κ equals diag(v κ). Look at exp(e) and expm(e) in MATLAB and explain the difference. Here ϵ is the eigenvalue matrix Λ .

(11) This model predicts that rabbits and foxes will grow without bound, which is only a good model for early times when rabbit food is plentiful. However it does predict the ratio of rabbits to foxes. Plot the solution $r(t)/f(t)$ for the initial condition of $r = 10$ and $f = 10$ using dt=1/20 for the interval [0 T], where T=5. To evaluate a matrix exponential at many times you will need a loop. For example to find $q(t) = e^{At}$ for $t = 0$: dt: T use:

```
1 t=0:dt:T;
2 q=zeros(1,N);
3 for n=1:N
4 q(n) = expm(A*t(n));5 end
```
(12) Compare the exact solution to lccfdodes. Rate each of the 4 integrators that we discussed.

(13) Compare to MATLAB's integrator ode45. The code to get the solution is:

```
1 t=0:dt:T; % list of times to find the solution
2 sol=deval(ode45((\theta(t, u), A*u, [0 T], u0), t);
```
Where A is the same matrix, and α is the initial conditions.